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Background. Childhood adverse experiences are known to induce persistent changes in the hypothalamic–pituitary–

adrenal (HPA) axis reactivity to stress. However, the mechanisms by which these experiences shape the neuro-

endocrine response to stress remain unclear.

Method. We tested whether bullying victimization influenced serotonin transporter gene (SERT) DNA methylation

using a discordant monozygotic (MZ) twin design. A subsample of 28 MZ twin pairs discordant for bullying

victimization, with data on cortisol and DNA methylation, were identified in the Environmental Risk (E-Risk)

Longitudinal Twin Study, a nationally representative 1994–1995 cohort of families with twins.

Results. Bullied twins had higher SERT DNA methylation at the age of 10 years compared with their non-bullied

MZ co-twins. This group difference cannot be attributed to the children’s genetic makeup or their shared familial

environments because of the study design. Bullied twins also showed increasing methylation levels between the age

of 5 years, prior to bullying victimization, and the age of 10 years whereas no such increase was detected in non-

bullied twins across time. Moreover, children with higher SERT methylation levels had blunted cortisol responses to

stress.

Conclusions. Our study extends findings drawn from animal models, supports the hypothesis that early-life stress

modifies DNA methylation at a specific cytosine–phosphate–guanine (CpG) site in the SERT promoter and HPA

functioning and suggests that these two systems may be functionally associated.
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Introduction

Evidence from animal studies suggests that exposure

to adverse environments early in life has long-term

consequences on later behavioural and neurobiologi-

cal functioning including hypothalamic–pituitary–

adrenal (HPA) axis reactivity to stress (Suomi, 1997 ;

Levine, 2005 ; Meaney & Szyf, 2005 ; Sanchez, 2006). In

humans, childhood maltreatment has been associated

with higher HPA axis activity (for a review, see

Tarullo & Gunnar, 2006). There is also growing inter-

est in understanding the origins of lower cortisol ac-

tivity, another marker of disruption of the HPA axis

(Heim et al. 2000 ; Gunnar & Vazquez, 2001 ; Fries et al.

2005). One prevailing hypothesis is that childhood

maltreatment may induce stable changes in HPA axis

activity and increase vulnerability to psychopathology

(Susman, 2006 ; van Goozen et al. 2007 ; Yehuda et al.

2010). In addition to lower diurnal cortisol secretion

(Cicchetti & Rogosch, 2001 ; Dozier et al. 2006 ; Bruce

et al. 2009), accumulating research also indicates

lower reactivity in relation to childhood adversity

(Carpenter et al. 2007 ; Elzinga et al. 2008; Tyrka et al.

2008). Similarly, we reported blunted cortisol re-

sponses to stress in bullied twins in comparison
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with their non-bullied monozygotic (MZ) co-twins

(Ouellet-Morin et al. 2011a). Examining discordant MZ

twins reduces the possibility that differences between

bullied and non-bullied children can be attributed to

genetic variation or shared family environments, thus

supporting the idea of an environmentally mediated

effect of childhood victimization on cortisol reactivity.

However, the mechanisms by which early adverse

experiences shape the HPA axis remain unclear.

Research suggests that susceptibility to psycho-

pathology partly arises from the interplay between

childhood maltreatment and a polymorphism in the

serotonin transporter gene (SERT) promoter (Canli &

Lesch, 2007 ; Caspi et al. 2010 ; Uher & McGuffin, 2010).

Notably, this polymorphism is also associated with

cortisol responses to stress in newborns (Mueller et al.

2010) and female adolescents (Gotlib et al. 2008). This

association was shown to be moderated by early ad-

versity in adults (Alexander et al. 2009), although non-

replication exists (Bouma et al. 2010). Because this

polymorphism explains a relatively small proportion

of SERT expression (<10%; Olsson et al. 2010), the

investigation of other mechanisms affecting ser-

otonergic neurotransmission, and potentially HPA

axis reactivity, should be pursued. One possibility is

that epigenetic alterations of SERT expression account

for the environmentally mediated effect of childhood

victimization on HPA axis reactivity. This hypothesis

is consistent with accumulating evidence, mainly de-

rived from animal studies, showing that epigenetic

remodelling represents a mechanism by which ad-

verse experiences disrupt reactivity to stress and

health (Jirtle & Skinner, 2007 ; Mill & Petronis, 2007 ;

Tsankova et al. 2007 ; Feinberg, 2008 ; Johnstone &

Baylin, 2010 ; Meaney, 2010). Preliminary evidence of

increased DNA methylation in the SERT promoter

region of adults with a history of childhood abuse

(Beach et al. 2010, 2011) supports the idea that SERT

DNAmethylation may link childhood victimization to

HPA axis activity.

The objectives of the present study were to examine

the impact of bullying victimization on SERT DNA

methylation and to test whether DNA methylation

was associated with lower cortisol responses to stress.

Similar to maltreatment, bullying victimization has

been associated with a wide range of mental health

problems (Arseneault et al. 2010). Both types of victi-

mization are characterized by intentional harm and

involve repeated harmful actions between individuals

where there is a power imbalance between the per-

petrator and the victim whereby it is difficult for the

victims to defend themselves (Arseneault et al. 2011).

Specifically, we tested whether differences in SERT

DNA methylation between bullied and non-bullied

children were detectable in childhood using a

longitudinal discordant MZ twin design to exert a

strong control over genetic and environmental con-

founds (Rutter, 2009). Based on previous findings, we

hypothesized higher SERT DNA methylation levels in

bullied twins compared with their non-bullied MZ co-

twins. Moreover, we examined SERT DNA methyla-

tion prior to victimization to rule out the possibility

that bullied children already had higher DNA methy-

lation levels. We then tested whether SERT DNA me-

thylation was associated with lower cortisol responses

to stress.

Method

Sample

Participants were recruited from the Environmental

Risk (E-Risk) Longitudinal Twin Study, which tracks

the development of a nationally representative birth

cohort of 2232 British children (Moffitt & the E-Risk

Study Team, 2002). The sample was drawn from a

larger birth register of twins born in England and

Wales in 1994–1995. The E-Risk sample was con-

structed in 1999–2000, when 1116 families with same-

sex 5-year-old twins (93% of those eligible) partici-

pated in home-visit assessments. Follow-up home

visits were conducted when the children were aged 7

(98% participation), 10 (96%) and 12 years (96%).

Zygosity of the twins was determined with a standar-

dized questionnaire which has been shown to have

95% accuracy (Price et al. 2000). Ambiguous cases

were zygosity typed using DNA. Parents gave in-

formed consent and children gave assent to participate

in the study. Ethical approval was granted by the Joint

South London and Maudsley and the Institute of

Psychiatry National Health Service (NHS) Ethics

Committee, UK.

From the E-Risk sample, we identified twin pairs

eligible to participate in a substudy of cortisol if they

met the following five criteria : (1) MZ twins ; (2) one

twin was bullied at least occasionally ; (3) bullying was

reported by both mothers and children at age 12 years ;

(4) bullying incidents involved harm, either psycho-

logical or physical ; and (5) co-twins never experienced

bullying victimization. From this substudy sample of

30 MZ twin pairs (Ouellet-Morin et al. 2011a), two

pairs had missing data on SERT DNA methylation at

the age of 10 years. The present study thus comprises

28 pairs of 12-year-old MZ twins discordant for

bullying victimization with valid cortisol and DNA

methylation data at the age of 10 years (42.9% males).

Most twins were Caucasian (92.9%) and one in four

families came from a low socio-economic background

(25.0%). Children in this subsample had intelligence

quotient (IQ) scores within the normal range when
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they were 5 years old (from 69 to 134 ; mean=100.1,

S.D.=15.4). We previously showed that one-third of

the variance in bullying victimization is due to unique

environments or random experiences (Ball et al. 2008).

These factors possibly explain why genetically ident-

ical individuals could be differently exposed to bully-

ing. For example, British twins are routinely separated

into different classrooms in secondary schools, which

may randomly place them at distinct risk for bullying

victimization. Bullied and non-bullied MZ twins were

similar on pre-existing risk factors (birth weight,

IQ, behavioural and emotional problems), child-

specific family environments (lifetime maltreatment,

maternal warmth), concomitant factors (body mass

index, pubertal maturity, bullying perpetration) and

Psychosocial Stress Test (PST)-related measures

(perceived stress and increased negative affect ;

Ouellet-Morin et al. 2011a). E-Risk discordant bullied

MZ twins did not differ from concordant bullied MZ

twins on socio-economic status, IQ or birth complica-

tions. A subset of 22 twin pairs had valid DNA data at

both the ages of 5 and 10 years.

Bullying victimization

We prospectively assessed bullying victimization for

all E-Risk participants during the interviews conduc-

ted with mothers when the children were 7, 10 and 12

years old and with the children themselves at the age

of 12 years. Before asking questions related to bullying

victimization, we explained that ‘Someone is being

bullied when another child : says mean and hurtful

things, makes fun or calls a person mean and hurtful

names; completely ignores or excludes someone from

their group of friends ; hits, kicks or shoves a person,

or locks them in a room; tells lies or spreads rumours

about them; and does other hurtful things like these.

We call it bullying when these things happen often,

and when it is difficult to make it stop. We do not call it

bullying when it is done in a friendly or playful way’.

We asked mothers whether each twin had been bull-

ied by another child, responding ‘never ’, ‘yes ’ or

‘ frequently ’. We further asked mothers who reported

bullying victimization whether the twin suffered

physical harm (e.g. bruise, cut) or psychological dis-

tress (e.g. bad dreams or school avoidance) as a

consequence of bullying, responding ‘never ’, ‘yes ’ or

‘ frequently ’. During private interviews, we asked

children ‘Have you been bullied by another person?’.

A senior investigator further reviewed all descriptions

of the bullying events recorded by the interviewers to

confirm instances of bullying by looking for evidence

of (1) repeated harmful actions, (2) between children,

and (3) where there was a power imbalance between

the bully and the victim. A test–retest reliability of 0.87

was noted for 30 parents randomly selected from the

total E-Risk sample and who were interviewed 3–6

weeks apart. Our findings indicate that both mothers

and children are valid and reliable informants of

bullying victimization and that they tended to agree

with one another (Shakoor et al. 2011). In this sub-

sample, mothers reported that 19.6, 28.6 and 51.8% of

children were victims of bullying at the ages of 7, 10

and 12 years, respectively, while 32.1% of twins re-

ported experiences of bullying since the beginning of

formal schooling.

Psychosocial Stress Test

When they were 12 years old, twins from the substudy

sample were invited to our research laboratory early

in the afternoon. At 1 h after arrival, each twin took

part in an adapted version of the Trier Social Stress

Test for children, which included a social stressor

(speaking in front of judges) and a cognitive stressor

(mental arithmetic ; Buske-Kirschbaum et al. 1997). The

cognitive task was first administered using the

Children’s Paced Auditory Serial Addition Task

(Dyche & Johnson, 1991), a serial-addition task used to

assess sustained attention, rate of information proces-

sing and working memory. Children heard a random

series of 61 numbers ranging from 1 to 9 and were

instructed to add the numbers in pairs such that each

number was added to the previous one. The time in-

terval between each number was 2.4 s for the first

series of numbers and 2.0 s for the second series.

Before the task started, children were told to make as

few mistakes as possible because they were in com-

petition against their co-twin and the winner would

get a prize. The research interviewer did not offer

support and avoided eye contact to enhance the

stressful aspect of the challenge. The public speaking

task immediately followed. Children were told to

stand and to recall their most unpleasant experience at

school in front of an unknown and inexpressive judge

and the interviewer. Children had 2 min to prepare in

silence, standing in front of the camera, and were then

asked to speak for 5 min. The PST lasted approxi-

mately 15 min. This stress paradigm was selected be-

cause a combination of public speaking and cognitive

tasks has been shown to elicit reliable cortisol re-

sponses in laboratory settings (Buske-Kirschbaum

et al. 1997 ; Dickerson & Kemeny, 2004). At the end, the

interviewer told the twins that they did well and re-

warded their efforts.

Cortisol

We collected five saliva samples to measure cortisol

responses to the PST. Saliva was collected by asking
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children to use a straw to pass through 1 ml of saliva

into the cryovials. The first samples were collected 20

and 2 min prior to the PST. A third sample was col-

lected immediately at the end. A fourth sample and a

fifth sample were collected 25 and 35 min after the

start of the tasks. Twins were asked to refrain from

doing any vigorous exercise in the morning, to eat a

light lunch before midday, avoiding dairy products

and red meat. Saliva samples were stored atx20 xC in

a freezer.

After thawing, saliva samples were centrifuged at

3500 revolutions per min for 10 min, which resulted in

a clear supernatant fraction of low viscosity. Saliva

cortisol concentrations were determined using the

‘ Immulite 1000’ model – Siemens’ Immunoassay Sys-

tem (www.diagnostics.siemens.com; Mondelli et al.

2010). The assay had an analytical sensitivity of

0.2 nmol/l and inter-/intra-assay precision of less

than 10%. All samples from each twin pair were ana-

lysed together. Cortisol measures were skewed and

normalized using a log10 transformation.

DNA methylation analysis

All DNA samples were extracted from buccal cells

using an established method that yields high-molecu-

lar-weight genomic DNA (Freeman et al. 2003). All

DNA samples were tested for degradation and purity

using spectrophotometry and gel electrophoresis. No

samples were excluded because of poor sample qual-

ity. Genomic DNA (375 ng) was treated with sodium

bisulfite using the EZ-96 DNA Methylation Kit (Zymo

Research, USA) following the manufacturer’s stan-

dard protocol. Bisulfite–PCR primers were designed

using Sequenom EpiDesigner software (http://

www.epidesigner.com). The SERT amplicon was

amplified using standard Sequenom MassCLEAVE

tagged primers (tags in lower case) : 5k-aggaagagag
TATTGTTAGGTTTTAGGAAGAAAGAGAGAG-3k
(forward) and 5k-cagtaatacgactcactatagggagaaggct
AACCCTCACATAATCTAATCTCTAAATAACC-3k
(reverse) and encompassed 471 base pairs (NCBI build

36, chromosome 17: 25586879-25587349). Bisulfite–

PCR amplification was conducted using Hot Star Taq

DNA polymerase (Qiagen, UK) and cycling conditions

of 45 cycles with an annealing temperature of 56 xC.

All reactions were performed in duplicate and DNA

methylation analysis was subsequently conducted

using the Sequenom EpiTYPER system (Sequenom

Inc., USA) as described previously (Coolen et al. 2007).

The Sequenom EpiTYPER system is a highly reliable

and quantitative technology for determining the den-

sity of methylated cytosines across specific genomic

loci (Coolen et al. 2007). It uses base-specific cleavage

followed by matrix-assisted laser desorption/ioniza-

tion-time of flight (MALDI-TOF) mass spectrometry in

which the size ratio of the cleaved products provides

quantitative methylation estimates for each cytosine–

phosphate–guanine (CpG) unit, which contains either

one or an aggregate of neighbouring CpG sites (see

Supplementary Figs 1 and 2). Artificially methylated

and unmethylated samples were included as positive

and negative controls to ensure unambiguous PCR

amplification of bisulfite-treated samples. All samples

were processed blind to sample identification. Data

generated from the EpiTYPER software were treated

with stringent quality-control analysis where CpG

units with low calling rates (<80%) were removed

from analyses (none identified).

Statistical analyses

We conducted statistical analyses in four steps. First,

we replicated previous findings indicating a blunted

pattern of cortisol response to stress in bullied twins in

comparison with their non-bullied co-twins using re-

peated-measures analysis of variance (ANOVA) in

this subsample of 28 twin pairs. Second, we tested a

promoter-wide difference in DNA methylation be-

tween bullied and non-bullied MZ twins using linear

regressions. In the presence of a significant finding, we

further explored site-specific differences. To control

for non-independent observations and patterns of

within-pair clustering due to shared genetic and en-

vironmental influences, linear regression analyses

were adjusted with tests based on the sandwich or

Huber/White variance estimator (Williams, 2000).

Third, we investigated separately the bullied and non-

bullied twins who had DNA at both the ages of 5

and 10 years (22 pairs) to test whether methylation

levels changed over time using repeated-measures

ANOVAs. Fourth, we explored the association be-

tween DNA methylation and cortisol responses

to stress using Pearson correlation adjusted with

the sandwich or Huber/White variance estimator.

Cortisol responses to the PST were indexed using the

standardized residuals (Z) of the area under the curve

with respect to increase (AUCi ; Pruessner et al. 2003),

calculated using the five cortisol measures and con-

trolling for dairy product consumption and histaminic

medication.

Results

Similarly to our previous findings (Ouellet-Morin et al.

2011a), we observed distinct patterns of cortisol re-

sponse to stress between bullied and non-bullied

twins (timerbullying: F2.23,115.68=2.94, p=0.05). While

non-bullied twins showed the expected cortisol in-

crease after the PST (F1.92,47.92=4.91, p=0.01), bullied
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twins did not exhibit this increase (F2.55,63.75=0.56,

p=0.61). Fig. 1 shows that bullied twins had higher

SERT DNA methylation at the age of 10 years, aver-

aged across the 12 CpG units compared with their

non-bullied MZ co-twins (t27=2.49, p=0.02). Ad-

ditional tests showed that this difference emerged

primarily from a site-specific difference (CpG8 in our

assay) (t27=2.39, p=0.02). Notably, both groups had

similar methylation levels prior to bullying victimiza-

tion at the age of 5 years (across the promoter region:

t21=0.56, p=0.58 ; CpG8: t21=0.57, p=0.58). Fig. 2

shows that while bullied twins had increased levels of

SERT methylation from the ages of 5 to 10 years at

CpG8 (F1,21=9.48, p=0.006), their non-bullied co-twins

did not show that increase (F1,21=0.32, p=0.58). DNA

methylation between the ages of 5 and 10 years re-

mained unchanged across the promoter region for

both bullied and non-bullied twins (F1,21=1.88, p=0.18

and F1,21=0.10, p=0.76, respectively ; see Fig. 2). We

previously showed that bullied and non-bullied twins

did not differ on child-specific family environments

(lifetime maltreatment, maternal warmth and lifetime

stressful life events), individual risk factors prior

(birth weight, IQ, externalizing and internalizing

problems) and concomitant to bullying experiences

(body mass index, pubertal maturity and bullying

perpetration) or related to the PST (perceived stress

and increase in negative affects ; Ouellet-Morin et al.

2011a). Therefore, these factors cannot account for

differences in DNA methylation between bullied and

non-bullied twins. Furthermore, Fig. 3 shows that

twins with higher methylation at CpG8 (age 10 years)

exhibited lower cortisol responses to the PST at the age

of 12 years (r=x0.28, p=0.02).
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Discussion

We showed for the first time in humans that childhood

victimization is associated with increased SERT DNA

methylation in the absence of pre-existent differences

between bullied and non-bullied children, providing

longitudinal support that epigenetic processes are

dynamic and responsive to early social environments.

Our findings are consistent with higher levels of SERT

methylation reported in adults exposed to harsh par-

enting, and physical and sexual abuses in childhood

(Beach et al. 2010). Previous studies have also shown

that SERT DNA methylation is associated with a life-

time history of major depression (Philibert et al. 2008 ;

Olsson et al. 2010), antisocial behaviour (Beach et al.

2011) and unresolved trauma, a known risk factor for

post-traumatic stress disorder (PTSD) (Bakermans-

Kranenburg & van IJzendoorn, 2009), suggesting the

potential role of SERT methylation in psychopath-

ology.

The present study extends current knowledge in

three ways. First, the discordant MZ twin design

makes it unlikely that group differences in DNA me-

thylation at this locus are attributable to genetic or

shared environmental factors such as parents’ psy-

chopathology (Rakyan et al. 2011). This key feature of

our study design further supports, in the absence of

random assignment, that childhood victimization ex-

erts an environmentally mediated effect on SERT

DNA methylation. Second, our longitudinal design

provides indirect evidence for directionality between

victimization and methylation; only bullied twins

showed increased DNA methylation from the age of

5 to 10 years, suggesting that it is not just a mere

reflection of pre-existing differences. This result

corroborates earlier findings showing that SERT

DNA methylation is largely attributable to uniquely

experienced environments (Wong et al. 2010) and

substantiates the presumed impact of childhood vic-

timization on higher SERT DNA methylation noted in

retrospective studies of adults (Beach et al. 2010, 2011).

Third, our findings suggest that the effect of early

victimization on SERT DNA methylation can already

be detected in childhood. This is consistent with the

differential clustering patterns of DNA methylation

reported across the genome between children raised in

institutional care and controls (Naumova et al. 2011)

and as a function of early maternal stress (Essex et al.

2011). Future studies examining DNA methylation

prior to, concurrently and following naturally occur-

ring adverse experiences could determine whether

these changes are long lasting and are uniquely ex-

plained by early victimization.

Our findings suggest that SERT DNA methylation

may be involved in the association between childhood

victimization and cortisol responses to stress.

Specifically, the increased SERT DNA methylation

shown in bullied twins and lower cortisol responses

reported in children with higher SERT methylation

are in line with previous suggestions of an en-

vironmentally mediated effect of bullying victimiza-

tion on HPA axis reactivity (Ouellet-Morin et al.

2011a). Two other investigations examined the as-

sociation between early adversity, DNA methylation

and the HPA axis in humans (Oberlander et al. 2008 ;

Tyrka et al. 2012). The first study showed increased

DNA methylation of the glucocorticoid receptor gene

(GR) in infants prenatally exposed to maternal de-

pressive/anxious moods which was, in turn, as-

sociated with higher cortisol reactivity. The second

study also reported increased GR DNAmethylation in

adults with a history of childhood adversity and lower

HPA reactivity (although not in the same CpG sites).

Contrasting effects of adverse experiences on HPA

axis functioning are thought to arise according to the

nature, duration and timing of exposure (Miller et al.

2007 ; Lupien et al. 2009). Also consistent with a time-

variant impact of adversity, maternal depressed/an-

xious moods during the 2nd trimester (but not in the

3rd) was associated with lower SERT DNA methyla-

tion (Devlin et al. 2010). Similar patterns of findings

have been detected elsewhere in the epigenome as

a function of famine exposure around the time

of conception but not in late gestation (Heijmans et al.

2008 ; Tobi et al. 2009) and maternal stress in the year

following birth but not during the preschool

years (Essex et al. 2011). The timing of exposure to

bullying victimization (middle childhood) may ex-

plain why we detected higher rather than lower SERT

DNA methylation in bullied children. Altogether,

these findings are consistent with the possibility that

epigenetic processes affect HPA axis reactivity.

Longitudinal research should investigate the possi-

bility that heterogeneous epigenetic and HPA axis

reactivity profiles emerge in children exposed to ad-

versity taking place at distinct periods of develop-

ment.

More generally, our findings are in line with a series

of experiments conducted with rodents indicating that

naturally occurring variation in maternal care medi-

ated, independently from DNA sequence, epigenetic

modifications in the hippocampus and resulted in

long-lasting changes in HPA axis reactivity (Meaney &

Szyf, 2005 ; McGowan & Szyf, 2010 ; Bagot & Meaney,

2010 ; Champagne, 2010). Specifically, rodents exposed

to low maternal care (e.g. licking and grooming) were

shown to have increased GR DNA methylation of the

exon 17 promoter, lower hippocampal GR expression

and higher HPA axis reactivity (Liu et al. 1997 ; Francis

et al. 1999 ; Weaver et al. 2004). A similar finding in
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victims of suicide with a history of maltreatment sup-

ports the idea that analogous biological pathways may

be present in humans (McGowan et al. 2009) and could

jeopardize physical health (Filiberto et al. 2011).

Additional findings suggest that early-life stress also

alters DNA methylation of the arginine vasopressin

gene (Murgatroyd et al. 2009) and the brain-derived

neurotrophic factor gene (Roth et al. 2009). Past re-

search thus suggests that early-life stress induces epi-

genetic remodelling of several genes directly or

indirectly regulating the HPA axis. Genome-wide

mapping of epigenetic alterations induced by early-

life stress may help to uncover the complexity of the

biological pathways underlying vulnerability to stress

and psychopathology.

Our study raises the possibility that SERT methyla-

tion is involved in the recalibration of neuroendocrine

stress reactivity following early adverse experiences

and thus represents a molecular basis of vulnerability

to stress and psychopathology. Lower cortisol re-

sponses to stress have recurrently been documented in

individuals with externalizing problems (van Goozen

et al. 2007 ; McCrory et al. 2010) or PTSD (Yehuda et al.

2010), especially in the context of childhood victimi-

zation (Meewisse et al. 2007 ; Ouellet-Morin et al.

2011b). The ‘attenuation hypothesis ’ suggests that

early adversity induces persistent cortisol elevation

followed by the down-regulation of HPA axis reac-

tivity (Susman, 2006). Lowering the set-points for in-

itiating a stress response could be adaptive when

exposed to uncontrollable and unpredictable harsh

living circumstances although it may exert long-term

constraints on neural circuits and brain structures

regulating stress, emotion reactivity and social be-

haviour (Fairchild et al. 2008 ; Feder et al. 2009). It is not

clear whether our findings are specific to bullying

victimization or could be generalized to other forms of

harmful experiences such as maltreatment by an adult.

On the one hand, these experiences are both char-

acterized by intentional harm and power imbalance

(Arseneault et al. 2011). On the other hand, it is poss-

ible that these experiences have distinct effects on

DNA methylation, especially if they occur at different

times during development. More research is needed

to identify which features of childhood victimization

affect epigenetic regulation and later vulnerability to

psychopathology.

We speculate that increased SERT DNA methyla-

tion following childhood victimization affects HPA

axis reactivity over time through the disruption of

serotonin (or 5-hydroxytryptamine ; 5-HT) neuro-

transmission. This hypothesized ‘cascade’ effect of

altered serotonin neurotransmission on HPA axis ac-

tivity following early-life stress is consistent with the

known facilitating and inhibiting effects of serotonin

neurotransmission, tryptophan depletion and the

serotonin transporter on HPA axis reactivity (Li et al.

1999 ; Lowry, 2002 ; Vielhaber et al. 2005). The pro-

posed role of SERT expression on poor stress coping

strategies is also suggested in studies conducted with

infant rhesus macaques exposed to early-life stress

(Miller et al. 2009 ; Kinnally et al. 2010a, b). Evidence in

humans also suggests that factors influencing ser-

otonergic activity could modulate reactivity to stress

through cortical–limbic regulation of emotions

(Herman & Cullinan, 1997 ; Ochsner & Gross, 2005).

For example, genetically based differences in SERT

expression have been associated with increased

amygdala activity to fearful stimuli (Hariri et al. 2002)

and perturbed functional connectivity in the anterior

cingulate cortex and the amygdala (Pezawas et al.

2005). It is also possible that persistent initial cortisol

elevations triggered by childhood victimization

affect SERT DNA methylation since glucocorticoids

also regulate SERT expression (Lesch et al. 1996).

Experiments conducted in rodents modelling the

pharmacological use of glucocorticoids in premature

babies support this possibility. Dexamethasone- and

hydrocortisone-treated animals had lower SERT ex-

pression compared with controls, which could rep-

resent an adaptive mechanism that compensates for

lower 5-HT levels (Vazquez et al. 2012). Childhood

experiences triggering repeated and prolonged HPA

axis activations, such as bullying victimization, may

thus shape the 5-HT system in ways that it disrupts

reactivity to stress and health. More research is needed

to explore the biological pathways and temporal se-

quence of the complex bidirectional influences taking

place between serotonergic pathways and the HPA

axis during development.

The present findings provide support for the impact

of childhood victimization on SERT DNAmethylation

and suggest an association between this epigenetic

signal and cortisol reactivity ; however, further tests

are needed. First, the functional role of CpG8 methy-

lation on SERT expression was not investigated.

However, increased DNA methylation in the SERT

promoter has been shown to decrease mRNA tran-

scription (Philibert et al. 2008 ; Olsson et al. 2010).

Second, we examined genomic DNA from buccal cells.

Although buccal cells are a uniform cell population

and of common embryonic origin with neuronal cells,

it is not known whether the findings generalize to

other tissues (Illingworth et al. 2008 ; Rakyan et al.

2008). Interestingly, a post-mortem investigation of 11

tissues (not buccal cells or blood) suggests, overall,

a homogeneous pattern of DNA methylation across

tissues (Byun et al. 2009). There are also preliminary

indications of correlated epigenetic signals between

blood and buccal cells for X-chromosome inactivation
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(Monteiro et al. 1998 ; Rosa et al. 2008) and in candidate

genes such as the corticotropin-releasing hormone

gene (CRH) (Talens et al. 2010). Third, we measured

SERT DNA methylation from samples collected at the

ages of 5 and 10 years while cortisol was assessed

when twins were aged 12 years. Concurrent measures

of SERT DNA methylation and HPA axis reactivity

repeatedly collected over time would help to establish

the directionality of this association. Finally, the study

was conducted in a small sample and should be re-

plicated in larger studies. The discordant MZ twin

design, however, allowed for a strong control of gen-

etic and shared environmental potential confounds

hardly ever taken into account in human studies

(Rutter, 2009).

Our findings show prospective evidence that

bullying victimization is associated with increased

SERT DNA methylation. Moreover, children with

higher SERT methylation exhibited lower cortisol re-

sponses to stress. Our study extends findings drawn

from animal models and raises the possibility that

early experiences of victimization modify the neu-

roendocrine response to stress through the alteration

of SERT DNA methylation. This epigenetic mechan-

ism may serve as an interface between childhood

victimization, later vulnerability to stress and psy-

chopathology.
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