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It takes something more than intelligence to act intelligently.
Fyodor Dostoyevsky, Crime and Punishment
Success in school—and life—depends on skills beyond cogni-

tive ability1–4. Randomized trials of early life educational interven-
tions find substantial benefits to educational outcomes, employment 
and adult health, even though the interventions have no lasting 
effects on children’s cognitive functions5,6. These results have cap-
tured the attention of educators and policy-makers, motivating 
interest in so-called ‘noncognitive skills’7–9. Noncognitive skills sus-
pected to be important for educational success include motivation, 
curiosity, persistence and self-control1,10–13. However, questions have 
been raised about the substance of these skills and the magnitudes 
of their impacts on life outcomes14.

Twin studies find evidence that noncognitive skills are herita-
ble3,15–18. Genetic analysis could help clarify the contribution of these 

skills to educational attainment and elucidate their connections with 
other traits. However, lack of consistent and reliable measurements 
of noncognitive skills in existing genetic datasets poses challenges19.

To overcome these challenges, we designed a GWAS of a latent 
trait, that is, a trait not measured in any of the genotyped subjects20. 
We borrowed the strategy used in the original analysis of noncogni-
tive skills within the discipline of economics21,22: we defined genetic 
influences on noncognitive skills as the genetic variation in educa-
tional attainment that was not explained by cognitive skills. We then 
performed GWASs on this residual ‘noncognitive’ genetic variation 
in educational attainment. This approach is a necessarily imperfect 
representation of the true relationship between cognitive and non-
cognitive skills; in human development, cognitive abilities and other 
skills relevant for educational attainment probably interact dynami-
cally, each influencing the other23. Our analysis excludes genetic 
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influences on education-relevant skills that also influence measured 
cognitive abilities. The value of this imperfect approach is to make a 
quantity otherwise difficult to study tractable for analysis.

We conducted analysis using genomic structural equation mod-
eling (Genomic-SEM)24 applied to published GWAS summary sta-
tistics for educational attainment and cognitive performance25. Our 
analysis used these summary statistics to ‘subtract’ genetic influence 
on cognitive performance from the association of each SNP with 
educational attainment. The remaining associations of each SNP 
with educational attainment formed a new GWAS of a noncognitive 
skills phenotype that was never directly measured. We call this new 
statistical approach GWAS-by-subtraction.

We used results from the GWAS-by-subtraction of noncog-
nitive skills to conduct two sets of analyses. First, we conducted 
hypothesis-driven analysis using the phenotypic annotation 
approach26. We used genetic correlation and polygenic score analy-
sis to test the hypothesis that noncognitive skills influence educa-
tional and economic attainments and longevity and to investigate 
traits and behaviors that constitute noncognitive skills. Second, we 
conducted hypothesis-free bioinformatic annotation analysis to 
explore the tissues, cell types and brain structures that might distin-
guish the biology of noncognitive skills from the biology mediating 
cognitive influences on educational attainment.

Results
GWAS-by-subtraction identifies genetic associations with non-
cognitive variance in educational attainment. The term ‘non-
cognitive skills’ was originally coined by economists studying 
individuals who were equivalent in cognitive ability but dif-
fered in educational attainment22. Our analysis of noncognitive 
skills was designed to mirror this original approach: we focused 
on genetic variation in educational outcomes not explained by 
genetic variation in cognitive ability. Specifically, we applied 
Genomic-SEM24 to summary statistics from GWASs of educa-
tional attainment25 and cognitive performance25. Both phenotypes 
were regressed on a latent factor representing genetic variance in 
cognitive performance (hereafter ‘Cog’). Educational attainment 
was further regressed on a second latent factor representing the 
residual genetic variance in educational attainment left over after 
regressing out variance related to cognitive performance (here-
after ‘NonCog’). By construction, NonCog genetic variance was 
independent of Cog genetic variance (rg = 0). In other words, the 
NonCog factor represents genetic variation in educational attain-
ment that is not accounted for by the Cog factor. These two latent 
factors were then regressed on individual SNPs, yielding a GWAS 
of the latent constructs NonCog and Cog. A graphic representa-
tion of the model is presented in Fig. 1. Parameters are derived 
in terms of the observed moments of the joint distribution of 
educational attainment, cognitive performance and an SNP 
(Supplementary Note).

The NonCog latent factor accounted for 57% of total genetic 
variance in educational attainment. Using linkage disequilib-
rium (LD) score regression27, we estimated the SNP heritability 
for NonCog to be h2

NonCog = 0.0637 (s.e. = 0.0021). After conven-
tional GWAS significance threshold correction, GWAS of NonCog 
identified 157 independent genome-wide-significant lead SNPs 
(independent SNPs defined as outside a 250-kb window, or 
within a 250-kb window and LD r2 < 0.1). The results from the 
NonCog GWAS are shown as a Manhattan plot in Fig. 2. NonCog 
and Cog GWAS details are reported in Supplementary Tables 
1–4, Supplementary Fig. 1 and the Supplementary Note. In addi-
tion, we report a series of sensitivity analyses as follows: analy-
sis of potential biases due to cohort differences (Supplementary 
Table 5 and Supplementary Figs. 2–4); analysis of impact of 
allowing for positive genetic correlations between NonCog and 
Cog (Supplementary Tables 6 and 7, and Supplementary Figs. 5 

and 6); and analysis of impact of allowing for a moderate causal 
effect of educational attainment on cognitive performance28 
(Supplementary Table 8 and Supplementary Figs. 7–9).

Phenotypic annotation analysis elucidates correlates of noncogni-
tive skills genetics. Our phenotypic annotation analyses proceeded 
in two steps. First, we conducted polygenic score (PGS) and genetic 
correlation (rG) analysis to test whether our GWAS-by-subtraction 
succeeded in identifying genetic influences that were important to 
educational attainment and also distinct from genetic influences 
on cognitive ability. Second, we conducted PGS and rG analyses to 
explore how NonCog related to a network of phenotypes that psy-
chology and economics research suggests might form the basis of 
noncognitive influences on educational attainment.

NonCog genetics are associated with education, socioeconomic 
attainment and longevity. To establish whether the Genomic-SEM 
GWAS-by-subtraction succeeded in isolating genetic variance in 
education that was independent of cognitive function, we compared 
genetic associations of NonCog and Cog with educational attain-
ment and cognitive test performance. Results for analysis of educa-
tion and cognitive test phenotypes are shown in Fig. 3.
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Fig. 1 | GWAS-by-subtraction Genomic-SEM model. Cholesky model as 
fitted in Genomic-SEM, with path estimates for a single SNP included as 
illustration. SNP, cognitive performance (CP) and educational attainment 
(EA) are observed variables based on GWAS summary statistics. The 
genetic covariance between CP and EA is estimated based on their 
GWAS summary statistics. The model is fitted to a 3 × 3 observed 
variance–covariance matrix (that is, SNP, CP, EA). Cog and NonCog are 
latent (unobserved) variables. The covariances between CP and EA 
and between Cog and NonCog are fixed to 0. The variance of the SNP is 
fixed to the value of 2pq (p = reference allele frequency, q = alternative 
allele frequency, based on 1000 Genomes Project phase 3). The residual 
variances of CP and EA are fixed to 0, so that all variance is explained 
by the latent factors. The variances of the latent factors are fixed to 
1. The observed variables CP and EA were regressed on the latent 
variables, resulting in the estimates for the path loadings: λCog-CP = 0.4465; 
λCog-EA = 0.2237; λNonCog-EA = 0.2565. The latent variables were then 
regressed on each SNP that met quality control criteria.
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We conducted PGS analysis of educational attainment in the 
Netherlands Twin Register29 (NTR), National Longitudinal Study of 
Adolescent to Adult Health30 (AddHealth), Dunedin Longitudinal 
Study31, E-Risk32 and Wisconsin Longitudinal Study33 (WLS) cohorts 
(meta-analysis n = 24,056; cohort descriptions in Supplementary 
Tables 9 and 10 and Supplementary Note). PGS effect sizes were 
the same for NonCog and Cog (NonCog β = 0.24 (s.e. = 0.03), Cog 
β = 0.24 (s.e. = 0.02), Pdiff = 0.702; all PGS results are reported in 
Supplementary Tables 11 and 12). We conducted complementary 
genetic correlation analysis using Genomic-SEM and GWAS sum-
mary statistics from a hold-out sample GWAS of educational attain-
ment (Supplementary Note). This analysis allowed us to compute 
an out-of-sample genetic correlation of NonCog with educational 
attainment. NonCog showed a stronger genetic correlation with 
educational attainment compared with Cog (NonCog rg = 0.71 
(s.e. = 0.02), Cog rg = 0.57 (s.e. = 0.02), Pdiff < 0.0001; all genetic cor-
relation results are reported in Supplementary Tables 13 and 14).

We conducted PGS analysis of cognitive test performance in 
the NTR, Texas Twin Project34, Dunedin, E-Risk and WLS cohorts 
(combined n = 11,351). The goal of our GWAS-by-subtraction analy-
sis was to exclude, as much as possible, genetic variance in cogni-
tive ability from genetic variance in skills relevant for education. 
Consistent with this goal, effect sizes for NonCog PGS associations  

with full-scale intelligence quotient (IQ) were smaller by half com-
pared with Cog PGS associations (NonCog β = 0.17 (s.e. = 0.02),  
Cog β = 0.29 (s.e. = 0.03); Pdiff < 0.0001). However, the non-zero cor-
relation between the NonCog PGS and full-scale IQ is a reminder that 
the cognitive performance GWAS used in our GWAS-by-subtraction 
analyses does not capture the entirety of genetic influences on all forms 
of cognitive tests measured at all points in the lifespan. Additional 
PGS analyses of IQ subscales are reported in Supplementary Fig. 10 
and Supplementary Tables 11 and 12.

We conducted complementary genetic correlation analysis 
using results from a published GWAS of childhood IQ35. Parallel 
to PGS analysis, the NonCog genetic correlation with childhood IQ 
was smaller by more than half compared with the Cog genetic cor-
relation (NonCog rg = 0.31 (s.e. = 0.06), Cog rg = 0.75 (s.e. = 0.08),  
Pdiff_fdr < 0.0001). Of the total genetic correlation between childhood 
IQ and educational attainment, 31% of the covariance was explained 
by NonCog and 69% by Cog.

We next examined downstream economic and health outcomes 
associated with greater educational attainment36,37. In the PGS anal-
ysis in the AddHealth and Dunedin cohorts (n = 6,358), NonCog 
and Cog PGSs showed similar associations with occupational 
attainment (NonCog β = 0.21 (s.e. = 0.01), Cog β = 0.21 (s.e. = 0.01), 
Pdiff = 0.902). In genetic correlation analysis, NonCog showed a  
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Fig. 2 | Manhattan plot of SNP associations with NonCog. Plot of the −log10(P value) associated with Wald’s test (two-sided) of βNonCog for all SNPs, ordered 
by chromosome and base position. Purple triangles indicate genome-wide-significant (P < 5 × 10−8) and independent (within a 250-kb window and r2 < 0.1) 
associations. The red dashed line marks the threshold for genome-wide significance (P = 5 × 10−8) and the black dashed line the threshold for nominal 
significance (P = 1 × 10−5).
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similar relationship to income38 to Cog (NonCog rg = 0.62 
(s.e. = 0.04), Cog rg = 0.62 (s.e. = 0.04), Pdiff_fdr = 0.947) and a stronger 
relationship with neighborhood deprivation38, a measure related to 
where a person can afford to live (NonCog rg = −0.51 (s.e. = 0.05), 
Cog rg = −0.32 (s.e. = 0.04), Pdiff_fdr = 0.001). In Genomic-SEM analy-
sis, NonCog explained 53% of the genetic correlation between edu-
cational attainment and income, and 65% of the genetic correlation 
between educational attainment and neighborhood deprivation 
(Supplementary Table 15).

We conducted genetic correlation analysis of longevity based 
on GWASs of parental lifespan39. Genetic correlations were stron-
ger for NonCog compared with Cog (NonCog rg = 0.37 (s.e. = 0.03);  
Cog rg = 0.27 (s.e. = 0.03); Pdiff_fdr = 0.024). In Genomic-SEM analy-
sis, NonCog explained 61% of the genetic correlation between edu-
cational attainment and longevity.

In summary, NonCog and Cog genetics showed similar relation-
ships with educational attainment and its long-term outcomes, 
despite NonCog genetics having a much weaker relationship to mea-
sured cognitive test performance than Cog genetics. These findings 
broadly support the hypothesis that noncognitive skills, distinct 
from cognitive abilities, are an important contributor to success 
across the life course.

We next conducted a series of genetic correlation analyses to 
explore the network of phenotypes to which NonCog was geneti-
cally correlated. To develop understanding of the substance of 
noncognitive skills, we tested where in that network of phenotypes 
genetic correlations with NonCog diverged from genetic correla-
tions with Cog. Our analysis was organized around four themes: 
decision-making preferences, health-risk and fertility behaviors, 
personality traits and psychiatric disorders. The results of genetic 
correlation analyses are shown in Fig. 4 and Supplementary Fig. 11, 
and reported in Supplementary Table 14.

NonCog genetics were associated with decision-making pref-
erences. In economics, noncognitive influences on achievement 
and health are often studied in relation to decision-making prefer-
ences40–43. NonCog was genetically correlated with higher tolerance 
of risks44 (rg = 0.10 (s.e. = 0.03)) and willingness to forgo immedi-
ate gratification in favor of a larger reward at a later time45 (delay 
discounting rg = −0.52 (s.e. = 0.08)). In contrast, Cog was genetically 
correlated with generally more cautious decision-making char-
acterized by lower levels of risk tolerance (rg = −0.35 (s.e. = 0.07), 
Pdiff_fdr < 0.0001) and delayed discounting (rg = −0.35 (s.e. = 0.07), 
Pdiff_fdr = 0.082).
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(holdout 23andMe sample)

Highest math class taken

Self-reported math ability

Childhood lQ

Educational attainment

Reading achievement

Math achievement

IQ

Genetic correlation analysis

PGS analysis

0

0 0.1 0.2

Standardized regression coefficient

0.3 0.4

0.25 0.50

Genetic correlation

0.75

Cog

Cog

NonCog

NonCog

1.00

a

b

Fig. 3 | Polygenic prediction and genetic correlations with IQ and educational achievement. a, Genetic correlations of NonCog and Cog with educational 
attainment, highest math class taken, self-reported math ability and childhood IQ. The dots represent genetic correlations estimated using Genomic-SEM. 
Correlations with NonCog are in orange and with Cog in blue. Error bars represent 95% confidence intervals (CIs). Exact estimates and P values are 
reported in Supplementary Table 14. For analysis of genetic correlations with educational attainment, we re-ran the Genomic-SEM model to compute 
NonCog and Cog using summary statistics that omitted the 23andMe sample from the educational attainment GWAS. We then used the 23andMe  
sample to run the GWAS of educational attainment. Thus, there is no sample overlap in this analysis. b, Effect-size distributions from meta-analysis of 
NonCog and Cog PGS associations with cognitive test performance and educational attainment. Outcomes were regressed simultaneously on NonCog and 
Cog PGSs. Effect sizes entered into the meta-analysis were standardized regression coefficients interpretable as Pearson’s r. Exact estimates and  
P values are reported in Supplementary Table 12. Samples and measures are detailed in Supplementary Tables 9 and 10. Traits were measured in different 
samples: educational attainment was measured in the AddHealth, Dunedin, E-Risk, NTR and WLS samples (n = 24,056); reading achievement and 
mathematics achievement were measured in the AddHealth, NTR and Texas Twin samples (n = 9,274 for reading achievement; n = 10,747 for mathematics 
achievement); cognitive test performance (IQ) was measured in the Dunedin, E-Risk, NTR, Texas Twins and WLS samples (n = 11,351). The densities were 
obtained by randomly generating normal distributions where the meta-analytic estimate was included as the mean and the meta-analytic s.e. as the s.d.
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NonCog genetics were associated with less health-risk behavior 
and delayed fertility. An alternative approach to studying specific 
noncognitive skills is to infer individual differences in noncognitive 

skills from patterns of health-risk behavior. NonCog was genetically 
correlated with less health-risk behavior, as indicated by analysis 
of obesity46, substance use44,47–50, and sexual behaviors and early  
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Fig. 4 | Estimates of genetic correlations with NonCog, Cog and educational attainment. Genetic correlations of NonCog, Cog and educational attainment 
with selected phenotypes. The dots represent genetic correlations estimated in Genomic-SEM. Correlations with NonCog are in orange, with Cog in blue 
and with educational attainment in gray. Error bars represent 95% CIs. Red stars indicate a statistically significant (FDR-corrected P < 0.05, two-tailed 
test) difference in the magnitude of the correlation with NonCog versus Cog. Exact P values for all associations are reported in Supplementary Table 14. The 
FDR correction was applied based on all genetic correlations tested (including in Supplementary Fig. 11). The difference test is based on a χ2 test associated 
with a comparison between a model constraining these two correlations to be identical versus a model where the correlations are freely estimated. SES, 
socioeconomic status. Source GWASs are listed in Supplementary Table 13.
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fertility44,51,52 (rg range 0.2–0.5), with the exception that the rg with 
alcohol use was not different from zero and rg with cannabis use was 
positive. Genetic correlations for Cog were generally in the same 
direction but of smaller magnitude.

NonCog genetics were associated with personality characteristics 
linked with social and professional competency. In psychology, 
noncognitive influences on achievement are conceptualized as per-
sonality traits, that is, patterns of stable individual differences in 
emotion and behavior. The model of personality that has received 
the most attention in genetics is a five-factor model referred to as 
the Big Five. Genetic correlation analysis of the Big Five person-
ality traits53–55 revealed that NonCog genetics were most strongly 
associated with Openness to Experience (being curious and eager 
to learn; rg = 0.30 (s.e. = 0.04)) and were further associated with a 
pattern of personality characteristic of changes that occur as peo-
ple mature in adulthood56. Specifically, NonCog showed a positive 
rg with Conscientiousness (being industrious and orderly; rg = 0.13 
(s.e. = 0.03)), Extraversion (being enthusiastic and assertive; rg = 0.14 
(s.e. = 0.03)), and Agreeableness (being polite and compassion-
ate; rg = 0.14 (s.e. = 0.05)), and negative rg with Neuroticism (being 
emotionally volatile; rg = −0.15 (s.e. = 0.04)). Genetic correlations 
of Cog with Openness to Experience and Neuroticism were similar 
to those for NonCog (Pdiff_fdr-Openness = 0.040, Pdiff_fdr-Neuroticism = 0.470). 
In contrast, genetic correlations of Cog with Conscientiousness, 
Extraversion and Agreeableness were in the opposite direction 
(rg = −0.25 to −0.12, Pdiff_fdr < 0.0005). PGS analysis of personality 
traits is reported in Supplementary Table 12, Supplementary Fig. 12 
and the Supplementary Note.

NonCog genetics were associated with higher risk for multiple 
psychiatric disorders. In clinical psychology and psychiatry, 
research is focused on mental disorders. Mental disorders are gen-
erally associated with impairments in academic achievement and 
social role functioning57,58. However, positive genetic correlations 
with educational attainment and creativity have been reported for 
some disorders59,60. We therefore tested NonCog rg with psychiatric 
disorders based on published case–control GWASs of mental dis-
orders61–67. NonCog was associated with higher risk for multiple 
clinically defined disorders, including anorexia nervosa (rg = 0.26 
(s.e. = 0.04)), obsessive–compulsive disorder (rg = 0.31 (s.e. = 0.06)), 
bipolar disorder (rg = 0.27 (s.e. = 0.03)) and schizophrenia (rg = 0.26 
(s.e. = 0.02)). Genetic correlations between Cog and psychiat-
ric disorders were either smaller in magnitude (anorexia nervosa 
rg = 0.08 (s.e. = 0.03), Pdiff_fdr < 0.001; obsessive–compulsive disorder 
rg = 0.05 (s.e. = 0.05), Pdiff_fdr = 0.002) or in the opposite direction 
(bipolar disorder rg = −0.07 (s.e. = 0.03), Pdiff_fdr < 0.001; schizophre-
nia rg = −0.22 (s.e. = 0.02), Pdiff_fdr < 0.001). Both NonCog and Cog 
showed negative genetic correlations with attention deficit hyper-
activity disorder (NonCog rg = −0.37 (s.e. = 0.03), Cog rg = −0.37 
(s.e. = 0.04), Pdiff_fdr = 0.947).

In summary, NonCog genetics were associated with phenotypes 
from economics and psychology thought to mediate noncognitive 
influences on educational success. These associations contrasted 
with associations for Cog genetics, supporting distinct pathways 
of influence on achievement in school and later in life. Opposing 
patterns of association were also observed for psychiatric disorders, 
suggesting that the unexpected positive genetic correlation between 
educational attainment and mental health problems uncovered in 
previous studies60,68,69 arises from noncognitive genetic influences 
on educational attainment.

Biological annotation analyses reveal shared and specific neuro-
biological correlates. The goal of biological annotation of GWAS 
discoveries is to elucidate molecular mechanisms mediating genetic 
influences on the phenotype of interest. Our biological annotation 

analysis proceeded in two steps. First, we conducted enrichment 
analysis to test whether some tissues and cell types were more likely 
to mediate NonCog and Cog heritabilities than others. Second, we 
conducted genetic correlation analysis to explore how NonCog and 
Cog genetics related to different brain structures.

NonCog and Cog genetics were enriched in similar tissues and 
cells. We tested whether common variants in genes specifically 
expressed in 53 Genotype-Tissue Expression (GTEx) tissues70 or in 
152 tissues captured in a previous aggregation of RNA-sequencing 
studies71,72 were enriched in their effects on Cog or NonCog. Genes 
predominantly expressed in the brain rather than peripheral tissues 
were enriched in both NonCog and Cog (Supplementary Table 16).

To examine expression patterns at a more granular level of analysis, 
we used MAGMA73 and stratified the LD score regression (LDSC)74 
to test enrichment of common variants in 265 nervous system, 
cell-type-specific gene sets75 (Supplementary Table 17). In MAGMA 
analysis, common variants in 95 of 265 gene sets were enriched 
for association with NonCog. The enriched cell types were pre-
dominantly neurons (97%), with enrichment most pronounced for 
telencephalon-projecting neurons, di- and mesencephalon neurons, 
and, to a lesser extent, telencephalon interneurons (Supplementary 
Fig. 13 and Supplementary Table 18). Enrichment for Cog was simi-
lar to NonCog (correlation between z-statistics Pearson’s r = 0.85), 
and there were no differences in cell-type-specific enrichment, 
suggesting that the same types of brain cells mediate genetic influ-
ences on NonCog and Cog (Supplementary Fig. 14). Stratified LDSC 
results were similar to results from MAGMA (Supplementary Note, 
Supplementary Fig. 15 and Supplementary Table 19).

The absence of differences in cell-type-specific enrichment is 
surprising given that NonCog and Cog are genetically uncorrelated. 
We therefore used the TWAS/Fusion tool76 to conduct gene-level 
analysis. This analysis revealed a mixture of concordant and dis-
cordant gene effects on NonCog and Cog consistent with the genetic 
correlation of 0 (Supplementary Note, Supplementary Fig. 16 and 
Supplementary Table 20).

NonCog and Cog genetics show diverging associations with total 
and regional brain volumes. Educational attainment has previ-
ously been found to be genetically correlated with greater total brain 
volume77,78. We therefore used a GWAS of regional brain volume to 
compare the rg of NonCog and Cog with total brain volume and 100 
regional brain volumes (99 gray-matter volumes and 1 white-matter 
volume) controlling for total brain volume (Supplementary Table 
21)79. For total brain volume, genetic correlation was stronger for 
Cog compared with NonCog (Cog rg = 0.22 (s.e. = 0.04), NonCog 
rg = 0.07 (s.e. = 0.03), Pdiff = 0.005). Total gray-matter volume, con-
trolling for total brain volume, was not associated with either 
NonCog or Cog (NonCog: rg = 0.07 (s.e. = 0.04); Cog: rg = 0.06 
(s.e. = 0.04)). For total white-matter volume, conditional on total 
brain volume, genetic correlation was weakly negative for NonCog 
compared with Cog (NonCog rg = −0.12 (s.e. = 0.04), Cog rg = −0.01 
(s.e. = 0.04), Pdiff = 0.04).

NonCog was not associated with any of the regional gray-matter 
volumes after false discovery rate (FDR) correction. In contrast, Cog 
was significantly associated with regional gray-matter volumes for 
the bilateral fusiform, insula and posterior cingulate (rg range 0.11–
0.17), as well as the left superior temporal (rg = 0.11 (s.e. = 0.04)), 
left pericalcarine (rg = −0.16 (s.e. = 0.05)) and right superior parietal 
volumes (rg = −0.22 (s.e. = 0.06)) (Fig. 5).

Finally, we tested genetic correlation of NonCog and Cog with 
white-matter tract integrity as measured using diffusion tensor 
imaging (DTI)80. Analyses included 5 DTI parameters in each of 
22 white-matter tracts (Supplementary Table 22). NonCog was 
positively associated with the mode of anisotropy (MO) param-
eter (which denotes a more tubular, as opposed to planar, water  
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diffusion) in the corticospinal tract, retrolenticular limb of the 
internal capsule and splenium of the corpus callosum (Fig. 5). 
However, all correlations were small (0.10 < rg < 0.14), and we 
detected no genetic correlations that differed between NonCog and 
Cog (Supplementary Note).

Discussion
GWASs of noncognitive influences on educational attainment iden-
tified 157 independent loci and polygenic architecture, accounting 
for more than half the genetic variance in educational attainment. 
In genetic correlation and PGS analysis, these NonCog genet-
ics showed a similar magnitude of associations with educational 
attainment, economic attainment and longevity to genetics asso-
ciated with cognitive influences on educational attainment (Cog). 
As expected, NonCog genetics had much weaker associations with 
cognition phenotypes compared with Cog genetics. These results 
contribute new GWAS evidence in support of the hypothesis that 
heritable noncognitive skills influence educational attainment and 
downstream life-course economic and health outcomes.

Phenotypic and biological annotation analyses shed light on 
the substance of heritable noncognitive skills influencing edu-
cation. Economists hypothesize that preferences that guide 
decision-making in the face of risk and delayed rewards represent 
noncognitive influences on educational attainment. Consistent 
with this hypothesis, NonCog genetics were associated with higher 
risk tolerance and lower time discounting. These decision-making 
preferences are associated with financial wealth, whereas the oppo-
site preferences are hypothesized to contribute to a feedback loop 
perpetuating poverty81. Consistent with results from the analysis of 

decision-making preferences, NonCog genetics were also associated 
with healthier behavior and later fertility.

Psychologists hypothesize that the Big Five personality charac-
teristics of conscientiousness and openness are the two ‘pillars of 
educational success’2,3,82. Our results provide some support for this 
hypothesis, with the strongest genetic correlation evident for open-
ness. However, they also show that noncognitive skills encompass 
the full range of personality traits, including agreeableness, extra-
version and the absence of neuroticism. This pattern mirrors the 
pattern of personality change that occurs as young people mature 
into adulthood56. Thus, noncognitive skills share genetic etiology 
with what might be termed a ‘mature personality’. The absolute 
magnitudes of genetic correlations between NonCog and individual 
personality traits are modest. This result suggests that the person-
ality traits described by psychologists capture some, but not all, 
genetic influence on noncognitive skills.

Although the general pattern of findings in our phenotypic 
annotation analysis indicated that noncognitive skills were geneti-
cally related to socially desirable characteristics and behaviors, there 
was an important exception. Genetic correlation analysis of a psy-
chiatric disorder GWAS revealed positive associations of NonCog 
genetics with schizophrenia, bipolar disorder, anorexia nervosa and 
obsessive–compulsive disorder. Previously, these psychiatric disor-
ders have been shown to have a positive rg with educational attain-
ment, a result that has been characterized as paradoxical given the 
impairments in educational and occupational functioning typical of 
serious mental illness. Our results clarify that these associations are 
driven by noncognitive factors associated with success in education. 
These results align with the theory that clinically defined psychiatric  
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Fig. 5 | Genetic correlations with regional gray-matter volumes and white-matter tracts. a, Cortical patterning of FDR-corrected significant genetic 
correlations with regional gray-matter volumes for Cog versus NonCog, after correction for total brain volume. Regions of interest are plotted according 
to the Desikan–Killiany–Tourville atlas97, shown on a single, manually edited surface (http://mindboggle.info)98. Exact estimates and P values are reported 
in Supplementary Table 21. Cog showed significant associations with gray-matter volume for the bilateral fusiform, insula and posterior cingulate, the left 
superior temporal, and left pericalcarine and right superior parietal volumes. NonCog was not associated with any of the regional brain volumes.  
b, White-matter tract patterning of FDR-corrected. significant genetic correlations with regional MO for Cog versus NonCog. White-matter tract probability 
maps are plotted according to the Johns Hopkins University DTI atlas (https://identifiers.org/neurovault.image:1401)99. Exact estimates and P values are 
reported in Supplementary Table 21. Cog was not associated with regional MO. NonCog showed significant associations with MO in the corticospinal tract, 
the retrolenticular limb of the internal capsule and the splenium of the corpus callosum.
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disorders represent extreme manifestations of dimensional psycho-
logical traits, which might be associated with adaptive functioning 
within the normal range83–85.

Finally, biological annotation analyses suggested that genetic vari-
ants contributing to educational attainment not mediated through 
cognitive abilities are enriched in genes expressed in the brain, spe-
cifically in neurons. Even though NonCog and Cog were genetically 
uncorrelated, variants in the same neuron-specific gene sets were 
enriched for both traits. Although we found some evidence of dif-
ferences between NonCog and Cog in associations with gray-matter 
volumes, moderate sample sizes in neuroimaging GWASs mean that 
these results must be treated as preliminary, requiring replication 
with data from larger-scale GWASs of white-matter and gray-matter 
phenotypes. Limited differentiation of NonCog and Cog in biologi-
cal annotation analyses focused at the levels of tissue and cell type 
highlights the need for finer-grained molecular data resources to 
inform these analyses and the complementary value of phenotypic 
annotation analyses focused at the level of psychology and behavior.

We acknowledge limitations. Cognitive and noncognitive skills 
develop in interaction with each other. For example, the dynamic 
mutualism hypothesis86 proposes that noncognitive characteristics 
shape investments of time and effort, leading to differences in the 
pace of cognitive development87,88. However, in Genomic-SEM anal-
ysis, the NonCog factor is, by construction, uncorrelated with genetic 
influences on adult cognition as measured in the Cog GWAS. Our 
statistical separation of NonCog from cognition is thus a simplified 
representation of development. Longitudinal studies with repeated 
measures of cognitive and candidate noncognitive skills are needed 
to study their reciprocal relationships across development89,90. Our 
statistical separation of NonCog from cognition is also incomplete. 
The ability to control statistically for any variable, genetic or oth-
erwise, depends on how well and comprehensively that variable is 
measured91. The tests of cognitive performance included in the Cog 
GWAS probably do not capture all genetic influences on all forms 
of cognitive ability across the lifespan92,93. Despite these limitations, 
our simplified and incomplete statistical separation of NonCog from 
Cog allowed us to test whether heritable traits other than cognitive 
ability influenced educational attainment and to explore what those 
traits might be.

As our analysis was based on GWAS of educational attain-
ment, noncognitive genetics identified in the present study may 
differ from noncognitive genetics affecting other socioeconomic 
attainments such as income, or traits and behaviors that mediate 
responses to early childhood interventions, to the extent that those 
genetics do not affect educational attainment. Parallel analysis of 
alternative attainment phenotypes will clarify the specificity of dis-
covered noncognitive genetics.

In the case of GWASs of educational attainment, the included 
samples were drawn mainly from western Europe and the USA, and 
participants completed their education in the late twentieth and 
early twenty-first centuries. The phenotype of educational attain-
ment reflects an interaction between an individual and the social 
system in which they are educated. Differences across social sys-
tems, including education policy, culture and historical context, 
may result in different heritable traits influencing educational 
attainment94. Results therefore may not generalize beyond the times 
and places where GWAS samples were collected.

Generalization of the NonCog factor is also limited by restriction 
of the included GWASs to individuals of European ancestry. Lack of 
methods for integrating genome-scale genetic data across popula-
tions with different ancestries95,96 requires this restriction, but raises 
threats to external validity. GWASs of other ancestries and develop-
ment of methods for trans-ancestry analysis can enable analysis of 
(Non)Cog in non-European populations.

Within the bounds of these limitations, the results illustrate the 
application of Genomic-SEM to conduct GWASs of a phenotype 

not directly measured in GWAS databases. This application could 
have broad utility beyond the genetics of educational attainment. 
The GWAS-by-subtraction method allowed us to study a previously 
hard-to-interpret residual value. Our analysis provides a view of the 
genetic architecture of noncognitive skills influencing educational 
success. These skills are central to theories of human capital for-
mation within the social and behavioral sciences and are increas-
ingly the targets of social policy interventions. Our results establish 
that noncognitive skills are central to the heritability of educational 
attainment and illuminate connections between genetic influences 
on these skills and social and behavioral science phenotypes.
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Methods
Meta-analysis of educational attainment GWASs. We reproduced the Social 
Science Genetic Association Consortium (SSGAC) 2018 GWAS of educational 
attainment25 by meta-analyzing published summary statistics for n = 766,345 
(www.thessgac.org/data) with summary statistics obtained from 23andMe, Inc. 
(n = 365,538). We included SNPs with sample size >500,000 and minor allele 
frequency > 0.005 in the 1000 Genomes Project reference set (10,101,243 SNPs). 
We did not apply genomic control, as standard errors of publicly available 
and 23andMe summary statistics were already corrected25. Meta-analysis was 
performed using METAL100.

GWAS-by-subtraction. The objective of our GWAS-by-subtraction analysis 
was to estimate, for each SNP, the association with educational attainment that 
was independent of that SNP’s association with cognition (hereafter, the NonCog 
SNP effect). We used Genomic-SEM24 in R v.3.4.3 to analyze GWAS summary 
statistics for the educational attainment and cognitive performance phenotypes in 
the SSGAC’s 2018 GWAS25. The model regressed the educational attainment and 
cognitive performance summary statistics on two latent variables, Cog and NonCog 
(Fig. 1). Cog and NonCog were then regressed on each SNP in the genome. This 
analysis allowed for two paths of association with educational attainment for each 
SNP. One path was fully mediated by Cog. The other path was independent of 
Cog and measured the noncognitive SNP effect, NonCog. To identify independent 
hits with P < 5 × 10−8 (the customary P-value threshold to approximate an α 
value of 0.05 in GWAS), we pruned the results using a radius of 250 kb and an 
LD threshold of r2 < 0.1 (Supplementary Tables 1–3). We explore alternative lead 
SNPs and definitions of loci in Supplementary Table 4. The parameters estimated 
in a GWAS-by-subtraction and their derivation in terms of the genetic covariance 
are described in the Supplementary Note (model specification), and practical 
analysis steps are further described in the Supplementary Note (SNP filtering). 
The effective sample size of the NonCog and Cog GWAS was estimated to 510,795 
and 257,700, respectively (Supplementary Note). We investigated biases from 
unaccounted-for heterogeneity in overlap across SNPs in the educational attainment 
and cognitive performance GWASs, and describe a possible strategy to deal with it 
(Supplementary Note). We investigated potential biases due to cohort differences 
in SNP heritability in the Supplementary Note. We evaluated the consequences of 
modifying rg(NonCog, Cog) = 0 by evaluating rg = 0.1, 0.2 or 0.3, and we investigated 
the consequences of a violation of the assumed causation between cognitive 
performance and educational attainment in the Supplementary Note.

Genetic correlations. We used Genomic-SEM to compute genetic correlations of 
Cog and NonCog with other education-linked traits for which well-powered GWAS 
data were available (SNP-h2 z-statistics > 2; Supplementary Table 13) and to test 
whether genetic correlations with these traits differed between Cog and NonCog. 
Specifically, models tested the null hypothesis that trait genetic correlations 
with Cog and NonCog could be constrained to be equal using a χ2 test with FDR 
adjustment to correct for multiple testing. The FDR adjustment was conducted 
across all genetic correlation analyses reported in the article, excluding the analyses 
of brain volumes described below. Finally, we used Genomic-SEM analysis of 
genetic correlations to estimate the percentage of the genetic covariance between 
educational attainment and the target traits that was explained by Cog and NonCog, 
using the model illustrated in Supplementary Fig. 17.

PGS analysis. PGS analyses were conducted in data drawn from six 
population-based cohorts from the Netherlands, the UK, the USA and New 
Zealand: (1) the NTR29,101, (2) E-Risk32, (3) the Texas Twin Project34, (4) the 
AddHealth30,102, dbGaP accession no. phs001367.v1.p1; (5) WLS33, dbGaP 
accession no. phs001157.v1.p1; and (6) the Dunedin Multidisciplinary Health and 
Development Study31. Supplementary Tables 9 and 10 describe cohort-specific 
metrics, and we include a short description of the cohorts’ populations and 
recruitment in Supplementary Note. Only participants with European ancestry 
were included in the analysis, due to the low portability of PGSs between different 
ancestry populations. PGSs were computed with PLINK based on weights derived 
using the LD-pred103 software with an infinitesimal prior and the 1000 Genomes 
Project phase 3 sample as a reference for the LD structure. LD-pred weights were 
computed in a shared pipeline to ensure comparability between cohorts. Each 
outcome (for example, IQ score) was regressed on the Cog and NonCog PGSs and 
a set of control variables (sex, 10 principal components derived from the genetic 
data, and, for cohorts in which these quantities varied, genotyping chip and age), 
using Stata 14 for WLS, Stata 15 for E-Risk and the Dunedin study, and R (v.3.4.3 
and newer) for NTR, AddHealth and the Texas Twin Project. In cohorts containing 
related individuals, nonindependence of observations from relatives was accounted 
for using generalized estimation equations or by clustering of standard errors at the 
family level. We used a random effects meta-analysis to aggregate the results across 
the cohorts. This analysis allows a cohort-specific random intercept. Individual 
cohort results are in Supplementary Table 11 and meta-analytic estimates in 
Supplementary Table 12.

Biological annotation. Enrichment of tissue-specific gene expression. We used gene 
sets defined in Finucane et al.104 to test for the enrichment of genes specifically 

expressed in 1 of 53 GTEx tissues70, or 152 tissues captured by the Franke et al. 
aggregation of RNA-sequencing studies71,72. This analysis seeks to confirm the 
role of brain tissues in mediating Cog and NonCog influences on educational 
attainment. The exact analysis pipeline used is available online (https://github.com/
bulik/ldsc/wiki/Cell-type-specific-analyses).

Enrichment of cell-type-specific expression. We leveraged single-cell RNA-sequencing  
data of cells sampled from the mouse nervous system75 to identify cell-type-specific 
RNA expression. Zeisel et al.75 sequenced cells obtained from 19 regions in the 
contiguous anatomical regions in the peripheral sensory, enteric and sympathetic 
nervous systems. After initial quality control, they retained 492,949 cells, which 
were sampled down to 160,796 high-quality cells. These cells were further grouped 
into clusters representing 265 broad cell types. We analyzed the dataset published 
by Zeisel et al.75 containing mean transcript counts for all genes with count >1 for 
each of the 265 clusters (Supplementary Table 17). We restricted analysis to genes 
with expression levels above the 25th percentile. For each gene in each cell type, we 
computed the cell-type-specific proportion of reads for the gene (normalizing the 
expression within cell type). We then computed the proportion of proportions over 
the 265 cell types (computing the specificity of the gene to a specific cell type). We 
ranked the 12,119 genes retained in terms of specificity to each cell type and then 
retained the 10% of genes most specific to a cell type as the ‘cell-type-specific’  
gene set. We then tested whether any of the 265 cell-type-specific gene sets  
were enriched in the Cog or NonCog GWASs. This analysis sought to identify 
specific cell types and specific regions in the brain involved in the etiology 
of Cog and NonCog. We further computed the difference in enrichment for 
Cog and NonCog to test whether any cell types were specific to either trait. 
For these analyses, we leveraged two widely used enrichment analysis tools: 
MAGMA73 and stratified LDSC74 with the European reference panel from the 
1000 Genomes Project phase 3 as SNP location and LD structure reference, 
Gencode release 19 as gene location reference and the human–mouse homology 
reference from MGI (http://www.informatics.jax.org/downloads/reports/HOM_
MouseHumanSequence.rpt).

MAGMA. We used MAGMA (v.1.07b)73, a program for gene-set analysis based 
on GWAS summary statistics. We computed gene-level association statistics 
using a window of 10 kb around the gene for both Cog and NonCog. We then 
used MAGMA to run a competitive gene-set analysis, using the gene P values 
and gene-correlation matrix (reflecting LD structure) produced in the gene-level 
analysis. The competitive gene-set analysis tests whether the genes within the 
cell-type-specific gene set described in Enrichment of cell-type-specific expression 
are more strongly associated with Cog/NonCog than other genes.

Stratified LDSC. We used LDSC to compute LD scores for the SNPs in each of 
our ‘cell-type-specific’ gene sets. Parallel to MAGMA analysis, we added a 10-kb 
window around each gene. We ran partitioned LDSC to compute the contribution 
of each gene set to the heritability of Cog and NonCog. To guard against inflation, 
we used LD score best practices, and included the LD score baseline model 
(baselineLD.v2.2) in the analysis. We judged the statistical significance of the 
enrichment based on the P value associated with the tau coefficient.

Difference in enrichment between Cog and NonCog. To compute differences in 
enrichment, we compute a standardized difference between the per-annotation 
enrichment for Cog and NonCog as:

Zdiff ¼
eCog � eNonCog

sqrt s:e:2Cog þ s:e:2NonCog � 2 ´CTI ´ s:e:Cog ´ s:e:NonCog
� � ð1Þ

where eCog
I

 is the enrichment of a particular gene set for Cog, eNonCog
I

 is the 
enrichment for the same gene set for NonCog, s:e:Cog

I
 is the standard error of the 

enrichment for Cog, s:e:NonCog
I

 is the standard error of the enrichment for NonCog 
and CTI is the LD score cross-trait intercept, a metric of dependence between the 
GWASs of Cog and NonCog.

We investigated the significance of the difference between Cog and NonCog tau 
coefficient with equation (1) as well as by computing jack-knifed standard errors. 
From the jack-knifed estimates of the coefficient output by the LDSC software, we 
computed the jack-knifed estimates and standard errors of the difference between 
Cog and NonCog tau coefficients, as well as a z-statistic for each annotation.

Enrichment of gene expression in the brain. We performed a transcriptome-wide 
association study (TWAS) using FUSION76 (http://gusevlab.org/projects/fusion). 
We used pre-computed brain–gene-expression weights available on the FUSION 
website, generated from 452 human individuals as part of the CommonMind 
Consortium. We then superimposed the bivariate distribution of the results of 
the TWAS for Cog and NonCog over the bivariate distribution expected, given the 
sample overlap between educational attainment and cognitive performance (the 
GWAS on which our GWASs of Cog and NonCog are based; Supplementary Note).

Brain modalities. Brain volumes. We conducted genetic correlation analysis of 
brain volumes using GWAS results published by Zhao et al.79, who performed 
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GWASs of total brain volume and 100 regional brain volumes, including 99 
gray-matter volumes and total white-matter volume (Supplementary Table 21). 
Analyses included covariate adjustment for sex, age, their square interaction 
and 20 principal components. Analyses of regional brain volumes additionally 
included covariate adjustment for total brain volume. GWAS summary statistics 
for these 101 brain volumes were obtained from https://med.sites.unc.edu/bigs2/
data/gwas-summary-statistics. Summary statistics were filtered and pre-processed 
using Genomic-SEM’s ‘munge’ function, retaining all HapMap3 SNPs with allele 
frequency >0.01 outside the major histocompatibility complex region. We used 
Genomic-SEM to compute the genetic correlations of Cog, NonCog and brain 
volumes. Analyses of regional volumes controlled for total brain volume. For 
each volume, we tested whether correlations differed between Cog and NonCog. 
Specifically, we used a χ2 test to evaluate the null hypothesis that the two genetic 
correlations were equal. We used FDR adjustment to correct for multiple testing. 
The FDR adjustment is applied to the results for all gray-matter volumes for Cog 
and NonCog separately.

White-matter structures. We conducted genetic correlation analysis of white-matter 
structures using GWAS results published by Zhao et al.80, who performed 
GWASs of DTI measures of the integrity of white-matter tracts. DTI parameters 
were derived for fractional anisotropy, mean diffusivity, axial diffusivity, radial 
diffusivity and MO. Each of these parameters was measured for 22 white-matter 
tracts of interests (Supplementary Table 22), resulting in 110 GWASs. GWAS 
summary statistics for these 110 GWASs were obtained from https://med.sites.
unc.edu/bigs2/data/gwas-summary-statistics. Summary statistics were filtered 
and processed using Genomic-SEM’s ‘munge’ function, retaining all HapMap3 
SNPs with allele frequency >0.01 outside the major histocompatibility complex 
region. For each white-matter structure, we tested whether genetic correlations 
differed between Cog and NonCog. Specifically, we used a χ2 test to evaluate 
the null hypothesis that the two genetic correlations were equal. We used FDR 
adjustment to correct for multiple testing. As these different diffusion parameters 
are statistically and logically interdependent, having been derived from the same 
tensor, FDR adjustment was applied to the results for each type of white-matter 
diffusion parameter separately. FDR correction was applied separately for Cog  
and NonCog.

Additional resources. A FAQ on why, how and what we studied is available 
at https://medium.com/@kph3k/investigating- the-genetic-architecture- 
of-non-cognitive- skills-using-gwas-by-subtraction-b8743773ce44. A tutorial 
on how to perform GWAS-by-subtraction is available at http://rpubs.com/
MichelNivard/565885

Additional resources to Genomic-SEM software include:
•	 A wiki including numerous tutorials: https://github.com/MichelNivard/

GenomicSEM/wiki
•	 A Genomic-SEM user group for specific questions relating to models and soft-

ware: https://groups.google.com/g/genomic-sem-users
•	 A venue to report technical issues: https://github.com/MichelNivard/

GenomicSEM/issues

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
GWAS summary data for NonCog and Cog (excluding 23andMe) have been 
deposited in the GWAS catalog with accession nos. GCST90011874 and 
GCST90011875, respectively (NonCog GWAS: ftp://ftp.ebi.ac.uk/pub/databases/
gwas/summary_statistics/GCST90011874, Cog GWAS: ftp://ftp.ebi.ac.uk/pub/
databases/gwas/summary_statistics/GCST90011875). For 23andMe dataset 
access, see https://research.23andme.com/dataset-access. Part of the AddHealth 
data is publicly available and can be downloaded at the following link: https://
data.cpc.unc.edu/projects/2/view#public_li. For restricted access data, details 
of the data-sharing agreement and data access requirements can be found at the 
following link: https://data.cpc.unc.edu/projects/2/view. The Dunedin study 
datasets reported in the current article are not publicly available due to lack of 
informed consent and ethical approval, but are available on request by qualified 
scientists. Requests require a concept paper describing the purpose of data access, 
ethical approval at the applicant’s university and provision for secure data access. 
We offer secure access on the Duke, Otago and King’s College campuses. All data 
analysis scripts and results files are available for review (https://moffittcaspi.trinity.
duke.edu/research-topics/dunedin). The E-Risk Longitudinal Twin Study datasets 
reported in the current article are not publicly available due to lack of informed 
consent and ethical approval, but are available on request by qualified scientists. 
Requests require a concept paper describing the purpose of data access, ethical 
approval at the applicant’s university and provision for secure data access. We 
offer secure access on the Duke and King’s College campuses. All data analysis 
scripts and results files are available for review (https://moffittcaspi.trinity.duke.
edu/research-topics/erisk). NTR data may be accessed, on approval of the data 
access committee (email: ntr.datamanagement.fgb@vu.nl). Researchers will be 

able to obtain Texas Twins data through managed access. Requests for managed 
access should be sent to E. Tucker-Drob (tuckerdrob@utexas.edu) and P. Harden 
(harden@utexas.edu), joint principal investigators of the Texas Twin Project. 
The WLS data can be requested following this form: https://www.ssc.wisc.edu/
wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf.

Code availability
Code used to run the analyses is available at https://github.com/PerlineDemange/
non-cognitive.
A tutorial on how to perform GWAS-by-subtraction is available at http://rpubs.
com/MichelNivard/565885. All additional software used to perform these analyses 
is available online.
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Data collection No software was used for data collection. 
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Sample size For the Cog and NonCog GWAS, the effective sample sizes were estimated, following Mallard et al. 2020 (Supplementary Note) 
For each phenotype in the polygenic score analysis, all available data was used, and reported in Supplementary Table 11. 

Data exclusions GWAS are based only on participants with European ancestry. For the PGS analyses, all available data was used, participants with a non-
White/European ancestry were excluded, due to the low portability of PGS between different ancestry populations.

Replication No replication was done. Polygenic score predictions were performed in several cohorts, cohort-specific and meta-analytic estimates are 
reported. See Supplementary Table 12 for details on which analyses were performed in which cohorts (PGS analyses reported in the 
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Population characteristics Description of the cohorts, including participants population, is available in Supplementary Note, and Supplementary Tables 
9-10. 

Recruitment Description of the cohorts, including participants recruitment, is available in Supplementary Note. Several cohorts under-
represent individuals with a lower SES background, exclusion of non-European ancestry participants and participants not having 
provided genetic information is likely to have increased the bias towards higher educated individuals. 
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