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A B S T R A C T

Children who grow up in neighborhoods with more green vegetation show enhanced cognitive development in
specific domains over short timespans. However, it is unknown if neighborhood greenery per se is uniquely
predictive of children's overall cognitive development measured across many years. The E-Risk Longitudinal
Study, a nationally representative 1994-5 birth-cohort of children in Britain (n= 1658 urban and suburban-
dwelling participants), was used to test whether residential neighborhood greenery uniquely predicts children's
cognitive development across childhood and adolescence. Greenery exposure was assessed from ages 5 to 18
using the satellite imagery-based normalized difference vegetation index (NDVI) in 1-mile buffers around the
home. Fluid and crystalized intellectual performance was assessed in the home at ages 5, 12, and 18 using the
Wechsler Intelligence Scale, and executive function, working memory, and attention ability were assessed in the
home at age 18 using the Cambridge Neuropsychological Test Automated Battery. Children living in residences
surrounded by more neighborhood greenery scored significantly higher, on average, on IQ measures at all ages.
However, the association between greenery and cognitive measures did not hold after accounting for family or
neighborhood socioeconomic status. After adjustment for study covariates, child greenery exposure was not a
significant predictor of longitudinal increases in IQ across childhood and adolescence or of executive function,
working memory, or attention ability at age 18. Children raised in greener neighborhoods exhibit better overall
cognitive ability, but the association is likely accounted for by family and neighborhood socioeconomic factors.

1. Introduction

Children who grow up in more versus less affluent neighborhoods
exhibit better physical, psychological, and cognitive outcomes
(Leventhal et al., 2015). Neighborhood socioeconomic status is one of
the most frequently measured and consistent predictors of children's
outcomes, even after family-level influences are taken in to account
(Brooks-Gunn et al., 1993). For the most part, the specific dimensions of
neighborhoods that support healthy child development remain poorly
characterized (Minh et al., 2017). Prior research has focused primarily
on the influence of negative features of children's built and social
neighborhood environments, including physical decay, neighborhood
disorder and crime, and a lack of social cohesion (Galster, 2012; Ross
et al., 2001; Sampson and Groves, 1989). However, intriguing new

findings are emerging regarding the potential role of positive features of
children's built environments on cognition and health. A number of
recent studies have reported positive associations between neighbor-
hood greenery, or the amount of leafy-green vegetation growing within
a neighborhood, and children's scores on cognitive and academic tests
in urban and suburban settings (Dadvand et al., 2015, 2017; 2018;
Flouri et al., 2018; Hodson and Sander, 2017; Kuo et al., 2018; Kweon
et al., 2017; Matsuoka, 2010; Sivarajah et al., 2018; Wu et al., 2014).

These findings raise the exciting possibility that children may ex-
perience cognitive benefits from spending time in or near “greenery”
(Collado and Staats, 2016; Keijzer et al., 2016), and that “greening”
vegetation-deprived urban neighborhoods may result in improved
cognitive outcomes for children. However, before investing in neigh-
borhood-level interventions based on these findings, we need to ensure
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that identified associations are due to neighborhood greenery per se
rather than to other related features of the neighborhood, or due to the
self-selection of individuals into greener neighborhoods.

A number of mechanistic theories have been proposed to explain the
associations found between children's exposure to neighborhood
greenery and their performance on cognitive and academic tests.
Strictly bio-physical theories argue that ambient vegetation improves
child cognitive development by reducing environmental stressors, such
as noise, heat, and air pollution, which are known to interfere with
cognitive performance and learning, particularly in urban spaces with
high stressor loads (Bowler et al., 2010; Dadvand et al., 2015; Kuo,
2015; Lee and Maheswaran, 2011; Shanahan et al., 2015). Bio-cognitive
theories argue that green vegetation, and vegetated areas, naturally
lower emotional arousal through evolutionarily-determined pathways
(de Vries et al., 2013; Groenewegen et al., 2006; Kuo, 2015), and may
encourage the restoration of cognitive resources that are otherwise
required when navigating built human environments, particularly ex-
ecutive functions (Berman et al., 2008; Collado and Staats, 2016;
Groenewegen et al., 2006; Kaplan, 1995; Ohly et al., 2016). Finally, bio-
social theories argue that neighborhood “greenness” simply reflects the
presence of parks and open spaces, which appear to provide children
with unique environments for physical activity, risk-taking, mastery,
self-regulation, and social-interaction, each of which may boost cogni-
tive development and learning (Bowler et al., 2010; Collado and Staats,
2016; Kahn and Kellert, 2002).

While several studies have linked higher levels of ambient greenery
surrounding schools to better school-wide test performance and in-
classroom child behavior for both primary and secondary school stu-
dents (Hodson and Sander, 2017; Kuo et al., 2018; Kweon et al., 2017;
Li and Sullivan, 2016; Matsuoka, 2010; Sivarajah et al., 2018; van den
Berg et al., 2017; Wu et al., 2014), few studies have examined in-
dividual child cognitive outcomes in relation to residential neighbor-
hood greenness. Two studies from Spain have reported positive asso-
ciations between residential neighborhood greenery (measured through
satellite-imagery) and child performance on attention and working
memory tests, assessed cross-sectionally at ages 4–5 and 7 (Dadvand
et al., 2017), and longitudinally across one year around age 8 (Dadvand
et al., 2015). An additional study in the UK recently reported positive
associations between residential neighborhood greenery (assessed
through land use data) and child performance on a single spatial
working memory task, assessed cross-sectionally at age 11 years (Flouri
et al., 2018).

Here we seek to extend the emerging evidence base on the re-
lationship between neighborhood greenery and child cognitive devel-
opment using the Environmental Risk (E-Risk) Longitudinal Twin
Study, a nationally-representative sample of children born in
1994–1995 in England and Wales and followed to age 18 (N=2232 in
the full cohort; Moffitt and the E-Risk Study Team, 2002). We drew on
objective measures of child neighborhood greenery (using the satellite-
imagery-derived normalized difference vegetation index, NDVI) and
child cognitive ability, and extend what is known about the association
between neighborhood greenery and child development in three ways.
First, neighborhood greenery has been related to cognitive abilities only
in the specific domains of working memory and attention. Here, we
include tests of fluid and crystalized intellectual performance to ask if
greenery exposure relates to child cognitive ability more generally
using a short-form-derived measure of overall IQ, which captures a
child's ability to reason, solve novel problems, and acquire and use
knowledge and information (Cattell, 1971). While working memory
and attention abilities contribute to child success in learning and school
performance (Alloway and Alloway, 2010), the IQ represents a more
global measure of ability that is known to predict outcomes of interest
to policy makers and parents, including job performance and occupa-
tional attainment, physical health and longevity, and general well-
being (Caspi et al., 2016; Gottfredson and Deary, 2004; Schaefer et al.,
2016; Sternberg et al., 2001; Zax and Reese, 2002). In case IQ tests are

too broad to detect subtle greenery effects, executive function, working
memory, and attention ability were also measured at age 18 years.
Second, while previous studies have reported neighborhood greenery
associations with cognitive development outcomes at individual time
points in childhood (Dadvand et al., 2017; Flouri et al., 2018) and, in
one study, across one year (Dadvand et al., 2015), here we leverage the
E-Risk Study's longitudinal design to test cognitive associations with
neighborhood greenery across the school-age years up through ado-
lescence, from ages 5–18 years. Third, most epidemiologic studies of
neighborhood effects attempt to control for the self-selection of weal-
thier families into greener neighborhoods by applying analytic models
that adjust for measures of family and neighborhood-level socio-
economic status. Here we control for both family and neighborhood
socioeconomic status while also adjusting estimates for possible self-
selection into greener neighborhoods by families with greater genetic
predisposition toward high educational attainment and rapid cognitive
development, using a polygenic score for educational attainment de-
rived from genome-wide association studies (GWAS) (Lee et al., 2018).

This study thus sought to determine whether residential neighbor-
hood greenery is uniquely predictive of children's overall cognitive
ability at multiple ages across childhood and adolescence or with
longitudinal growth in children's cognitive abilities as they develop,
using high-quality measures of genetic and socioeconomic factors to
adjust for the potential self-selection of children with high cognitive
ability into greener neighborhoods.

2. Methods

2.1. Sample

Participants are members of the Environmental Risk (E-Risk)
Longitudinal Twin Study, a nationally representative sample of children
born in 1994 and 1995 in England and Wales (N= 2232). Details about
the sample have been reported previously (Moffitt and the E-Risk Study
Team, 2002). Briefly, the E-Risk sample was constructed in 1999–2000,
when 1116 families with same-sex 5-year-old twins (93% of those eli-
gible) participated in home-visit assessments. The full sample com-
prised 56% monozygotic (MZ) and 44% dizygotic (DZ) twin pairs; sex
was evenly distributed within zygosity (49% male). Families were re-
cruited to represent the UK population of families with newborns in the
1990s, based on residential location throughout England and Wales and
mothers' age (teenaged mothers with twins were over-selected to re-
place high-risk families who were selectively lost to the register through
non-response. Older mothers having twins via assisted reproduction
were under-selected to avoid an excess of well-educated older mothers).
The study sample represents the full range of socioeconomic conditions
in Great Britain, as reflected in the families' distribution on a neigh-
borhood-level socioeconomic index (ACORN [A Classification of
Residential Neighborhoods], developed by CACI Inc. for commercial
use) (Odgers et al., 2012). E-Risk families’ ACORN distribution closely
matches that of households nation-wide: 25.6% of E-Risk families live
in “wealthy achiever” neighborhoods compared to 25.3% nationwide;
5.3% vs. 11.6% live in “urban prosperity” neighborhoods; 29.6% vs.
26.9% live in “comfortably off” neighborhoods; 13.4% vs. 13.9% live in
“moderate means” neighborhoods; and 26.1% vs. 20.7% live in “hard-
pressed” neighborhoods. E-Risk underrepresents “urban prosperity”
neighborhoods because such households are likely to be childless.

Follow-up home visits were conducted when the participants were
aged 7 (98% participation), 10 (96%), 12 (96%), and, most recently, 18
(93%) years. Home visits at ages 5, 7, 10, and 12 years included as-
sessments with participants as well as their mother (or primary care-
taker); the home visit at age 18 included interviews only with the
participants. Each twin participant was assessed by a different inter-
viewer. The Joint South London and Maudsley and the Institute of
Psychiatry Research Ethics Committee approved each phase of the
study. Parents gave informed consent and twins gave assent between 5
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and 12 years and then informed consent at age 18.
As there are, on average, significant differences between urban/

suburban-dwelling and rural-dwelling families in terms of neighbor-
hood greenery and general socioeconomic trends (Galster, 2012; Minh
et al., 2017; Mitchell and Popham, 2007; Riva et al., 2009), for this
analysis we focused only on the urban and suburban-dwelling members
of the E-Risk Study (n= 1658 analysis sample; 74.3% of the full cohort;
52.0% female). This matches the sample characteristics of previous
studies of child residential neighborhood greenery exposure (e.g.,
Dadvand et al., 2015, 2017; Flouri et al., 2018), and avoids potential
confounding due to gross urban/suburban vs. rural differences. Urba-
nicity classification was based on responses from a postal survey sent to
residents living alongside E-Risk families when children were aged 12.
Residents reported whether their neighborhood was in “a city,” “a
town,” “a suburb,” “a small village,” or “the countryside.” Urbanicity
was categorized as urban (1: city/town), suburban (2: suburb), and
rural (3: small village/countryside); additional details on the classifi-
cation of residences in the E-Risk Study are provided elsewhere
(Newbury et al., 2016). The analysis sample's ACORN distribution is
similar to that of the full cohort but represents slightly fewer “wealthy
achiever” neighborhoods (19.3% of the analysis sample live in “wealthy
achiever” neighborhoods compared to 25.6% in the full cohort) and
slightly more “hard pressed” neighborhoods (30.2% of the analysis
sample live in “hard pressed” neighborhoods compared to 26.1% in the
full cohort).

2.2. Measures

2.2.1. Childhood neighborhood greenery exposure
Greenery exposure was calculated through a measure of the density

of ambient leafy vegetation within a 1-mile radius of the child's home:
the satellite-image-derived NDVI. Each child received an NDVI score
localized to their residence at ages 5, 7, 10, 12, and 18. NDVI scores
describe the ratio of near-infrared/green light to visible/red and blue
light detected in a satellite image. NDVI gives a standardized measure
of the “greenness” of a patch of land, as near-infrared and green light
are reflected by healthy, chlorophyll-rich vegetation while visible and
red and blue light are absorbed. NDVI values range from −1 to +1.
Negative values typically represent clouds, snow, or water, values close
to zero represent barren areas (e.g., rock, sand, buildings), and values
close to one represent dense vegetation zones, like rainforests. For each
home assessment year (participant ages 5, 7, 10, 12, and 18), raw
MODIS (MOD13Q1) satellite images were retrieved from the U.S.-
National Aeronautics and Space Administration's EarthData registry
(https://earthdata.nasa.gov/) across 16-day time series during peak
vegetation periods for the Study region (August) localized to the Study
members home address at those ages. Images were resampled to a
30×30m resolution. 1-mile home radius buffers were chosen to ac-
commodate the neighborhood activity zone of primary school age
children (approximately 800m) and adolescents (up to approximately
1600m) (Carver et al., 2008; Jones et al., 2009; Villanueva et al.,
2012).

To examine associations between lifelong residential greenery ex-
posure and cognitive outcomes at ages 5, 12, and 18, and across ages 5
to 12 and 12 to 18, NDVI scores were averaged up to each age point of
IQ assessment to produce an average childhood NDVI score by that age
comprised of at least half of the potential observation time points
whenever data was missing. A cross-sectional NDVI score was available
for 1574 children at age 5 (94.9% of the analysis sample, 51.8% female,
Mean=0.57, SD=0.09, Range=0.14 to 0.85), and childhood
average NDVI scores were generated for 1656 children for ages 5–12
(99.9% of the analysis sample, 52.9% female, Mean=0.58, SD=0.08,
Range= 0.21 to 0.82) and 1651 children for ages 5–18 (99.6% of the
analysis sample, 51.8% female, Mean= 0.55, SD=0.08, Range=0.21
to 0.82).

2.2.2. Childhood cognitive ability
Overall cognitive ability was assessed at age 5 years using a short

form of the Wechsler Preschool and Primary Scale of Intelligence-
Revised (WPPSI-R) (Buckhalt, 1990) using standard testing procedure.
Using two subtests, Vocabulary (measuring crystallized ability) and
Block Design (measuring fluid ability), children's age-5 IQs were com-
puted following the procedure described by Sattler (1992) (Table H-7).
Overall cognitive ability was assessed again at age 12 years using a
short form of the Wechsler Intelligence Scale for Children-IV (WISC-IV)
using standard testing procedure. Using two subtests, Information
(measuring crystallized ability) and Matrix Reasoning (measuring fluid
ability), children's age-12 IQs were computed following the procedure
described by Sattler and Dumont, 2004 (Table A-9). Overall cognitive
ability was assessed a final time at age 18 years using a short form of the
Wechsler Adult Intelligence Scale–IV (WAIS-IV) using standard testing
procedure. Using two subtests, Information (measuring crystallized
ability) and Matrix Reasoning (measuring fluid ability), children's age-
18 IQs were computed following the procedure described by Sattler
(2009) (Table A-11). The WPPSI-R, WISC-IV, and WAIS-IV use matched
scales. Executive function, working memory, and attention ability were
also measured, independently, at age 18 years using the Cambridge
Neuropsychological Test Automated Battery (CANTAB; http://www.
cambridgecognition.com/cantab/) using standard testing procedures.
Executive function was assessed through the Spatial Span subtest,
which assesses the ability to hold in active memory and manipulate
information about variable spatial sequences. Working memory was
assessed through the Spatial Working Memory subtest, which assesses
the ability to hold information about spatial location in active memory
while searching for information. Attention was assessed through the
Rapid Visual Information Processing subtest, which assesses sustained
attentional vigilance for a target sequence within an on-going stream of
digits.

2.2.3. Covariates
Covariates measured at the child-genetic, family, and neighborhood

level were used to account for selection effects that may influence both
child cognition and exposure to greenery.

2.2.3.1. The polygenic score for educational attainment. To adjust for
possible self-selection into greener neighborhoods by families of
children carrying genes associated with more rapid cognitive
development and higher levels of cognitive function, we turned to a
polygenic score derived from a recent genome-wide association study
(GWAS) of educational attainment. GWAS are large-scale data mining
studies that scan common genetic variants across the entire human
genome. GWAS of educational attainment have identified hundreds of
variants associated with educational attainment and cognitive ability
(Lee et al., 2018). A composite measure derived from these GWAS
results, called a polygenic score (Dudbridge, 2013), can predict
attainment in school, at work, and in the accumulation of wealth
across life, including differences between siblings in the same family
(Belsky et al., 2016, 2018). This polygenic score is also predictive of the
rate of cognitive development in childhood (Belsky et al., 2016). There
is also emerging evidence that this polygenic score is associated with
family and neighborhood socioeconomic status (Belsky et al., 2018;
Domingue et al., 2015). Polygenic scores for educational attainment
were created for each child of European descent (90% of full cohort,
88% of analysis sample) using the methods described below.

Genotyping – We used Illumina HumanOmni Express 12 BeadChip
arrays (Version 1.1; Illumina, Hayward, CA) to assay common single-
nucleotide polymorphism (SNP) variation in the genomes of cohort
members. We imputed additional SNPs using the IMPUTE2 software
(Version 2.3.1; https://mathgen.stats.ox.ac.uk/impute/impute_v2.
html) (Howie et al., 2009) and the 1000 Genomes Phase 3 reference
panel (Abecasis et al., 2012). The resulting genotype databases included
genotyped SNPs and SNPs imputed with 90% probability of a specific
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genotype among the European-descent members of the E-Risk cohort
(N= 1999 participants in 1011 families). We analyzed SNPs in Hardy-
Weinberg equilibrium (p > .01).

Polygenic scoring – Polygenic scoring was conducted following the
method described by Dudbridge (2013) using the PRSice software
(Euesden et al., 2015). Briefly, SNPs reported in the most recent GWAS
results released by the Social Science Genetic Association Consortium
(Lee et al., 2018) were matched with SNPs in the E-Risk database. For
each SNP, the count of education-associated alleles was weighted ac-
cording to the effect estimated in the GWAS. Weighted counts were
summed across SNPs to compute polygenic scores. We used all matched
SNPs to compute polygenic scores irrespective of nominal significance
for their association with educational attainment.

Additional details on genotyping, imputing, and polygenic scoring
are available in the Supporting Information and in Wertz et al. (2018).

2.2.3.2. Family socioeconomic status. To adjust for possible self-
selection into greener neighborhoods by families with greater
socioeconomic status, family socioeconomic status (SES) was
measured via a composite of parental income, education, and
occupation that was divided into tertiles (i.e., low, middle, high-SES)
(Trzesniewski et al., 2006). 37.15%, 32.93%, and 29.92% of the
analysis sample were classified as low, middle, and high-SES
respectively.

2.2.3.3. Neighborhood socioeconomic status. To adjust for possible
confounding of greenery-IQ associations by socioeconomic aspects of
the neighborhood environment, which may be related to the density of
greenery within the neighborhood, neighborhood socioeconomic status
was calculated for each Study member based on their address at ages 5,
7, 10, and 12 using the U.K. Government’s 2015 Index of Multiple
Deprivation (IMD; https://www.gov.uk/government/statistics/english-
indices-of-deprivation-2015) score for the address. The IMD is a linear
combination of a set of relative measures of deprivation for small areas
(“Lower-layer Super Output Areas”) across the U.K., which are based on
seven different domains of deprivation: 1) Income Deprivation, the
proportion of the population experiencing deprivation relating to low
income; 2) Employment Deprivation, the proportion of the working age
population in an area involuntarily excluded from the labour market; 3)
Education, Skills and Training Deprivation, the lack of attainment and
skills in the local population; 4) Health Deprivation and Disability,
measures the risk of premature death and the impairment of quality of
life through poor physical or mental health; 5) Crime, measures risk of
personal and material victimization; 6) Barriers to Housing and
Services, measures the physical and financial accessibility of housing
and local services; and 7) Living Environment Deprivation, measures
the quality of the local environment, with indicators for the ‘indoors’
living environment (containing measures of the quality of housing) and
indicators for the ‘outdoors’ living environment (containing measures of
air quality and road traffic accidents).

The Index of Multiple Deprivation ranks every small area in England
(so-called Lower-Layer Super Output Areas, LSOA, containing ap-
proximately 650 households or 1500 individuals) from 1 (most de-
prived area) to 32,844 (least deprived area). Rankings are published
alongside deciles, which were used in this analysis, and were available
for 2007, 2010, and 2015. There was high correlation among IMD rank
scores at each available year: for example, the 2007 and 2015 IMD
measures for the children's home address correlate at r= 0.975,
p < .005. Consequently, only the 2015 IMD data, which contained a
built in postcode-to-LSOA conversion tool, were used for this study.

2015 IMD decile scores falling within a half-mile radius surrounding
the child's home were averaged across ages 5, 7, 10, and 12 to create a
childhood average neighborhood socioeconomic status score. The half-
mile radius was chosen to match the most commonly used metrics of
neighborhood poverty in the UK and the US, the Super Output Area and
the Census Block Group, respectively (each containing between 600 and

3000 people). Average IMD scores were then used to control for
neighborhood socioeconomic status in regression models examining
associations between residential greenery and IQ scores at ages 12 and
18. For tests examining associations between residential greenery and
IQ scores at age 5, only the age 5 IMD score was used.

2.3. Statistical analysis

Our analysis followed three steps. First, in a cross-sectional analysis,
we tested the association between childhood greenery exposure and
child cognitive ability measured at ages 5, 12, and 18 using full in-
formation maximum likelihood (FIML) estimated regression models to
account for missing data. In an initial model, the outcome was regressed
on childhood greenery exposure and sex. Each cognitive outcome was
then examined using four covariate-adjusted models, including: (1) a
“genetics-adjusted" model in which the outcome was regressed on
childhood greenery exposure and the covariates of sex and the child's
educational-attainment polygenic score, (2) a “family-adjusted” model
in which the outcome was regressed on childhood greenery exposure
and the covariates of sex and family socioeconomic status, (3) a
“neighborhood-adjusted” model in which the outcome was regressed on
childhood greenery exposure and the covariates of sex and residential
neighborhood socioeconomic status, and (4) a “fully-adjusted” model in
which the outcome was regressed on childhood greenery exposure and
the covariates of sex, the child's educational-attainment polygenic
score, family socioeconomic background, and residential neighborhood
socioeconomic status. Analyses were conducted with Mplus, Version 8
(Muthén and Muthén, 2017). Childhood average greenery exposure
scores were utilized for tests involving age 12 and age 18 outcomes in
order to examine the influence of cumulative greenery exposure up to
that age, matching previously used methodology (Dadvand et al.,
2015). As a sensitivity test, these analyses were also run using cross-
sectional greenery exposure scores at age 12 and 18. These tests pro-
duced similar results to those run with the cumulative childhood
average exposure scores, with generally smaller effect sizes found. Only
cross-sectional greenery exposure scores were available at age 5.

Second, in a longitudinal analysis, we tested the association be-
tween childhood greenery exposure and longitudinal change in child IQ
from ages 5 to 12 and from ages 12 to 18 using an analysis of covar-
iance model of IQ change. Age 5 and age 12 child IQ scores were added
as covariates to each of the models specified in the first step that pre-
dicted age 12 and age 18 IQ scores, respectively. In this way greenery-
IQ associations were adjusted for past IQ scores, providing a test of the
relationships between cumulative greenery exposure and change in IQ
between the two time-points. Additionally, to test the potential influ-
ence of longitudinal change in child greenery exposure across assess-
ment waves, we created greenery and IQ change scores from ages 5 to
12 and from ages 12 to 18. These were calculated by subtracting age 5
greenery and IQ scores from their corresponding age 12 scores and by
subtracting age 12 greenery and IQ scores from their corresponding age
18 scores. Associations between longitudinal change in greenery ex-
posure and longitudinal change in child IQ were examined using cor-
relation tests.

Third, we tested the association between childhood greenery ex-
posure and executive function, working memory, and attention ability
at age 18 years, using the same initial and covariate-adjusted regression
models specified in the first step.

Because the E-Risk Study contains a sample of twins, the non-in-
dependence of children within families was accounted for at each
analysis step by adjusting the standard errors using the Mplus Cluster
command. All results are presented in standard deviation units.

Comparing cases with present versus missing greenery ex-
posure data: 100% of the E-Risk Study cohort was seen at age 5, 96%
at age 12, and 93% at age 18. In order to best replicate past studies on
greenery associations with child cognitive development (Dadvand
et al., 2015, 2017; Flouri et al., 2018) this study considered only urban
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and suburban members of the E-Risk Study; children who were rural
dwelling by age 12 (n= 494) or who had missing data on the measure
of urbanicity (n= 80) were removed from the analysis sample. Of the
remaining 1658 children, a minimum of 95% had present greenery data
for each analysis. There were no statistically significant differences
between those with and without greenery measurement in terms of
children's cognitive abilities, their educational-attainment polygenic
scores, or their social class origins, but those children without greenery
data did have lower neighborhood socioeconomic status scores (Mean
neighborhood socioeconomic status for children with greenery
data= 0.175 z-score standardized units, Mean for children without= -
0.335, p < .001).

All urban and suburban dwelling children were included in the
analyses. FIML was used to adjust model estimates for information
known to relate to the probability of missingness on study variables.
FIML is a widely accepted technique for dealing with missing data
(Enders, 2001; Raykov, 2005) that, in most simulation studies, performs
equally well to or better than multiple imputation techniques with re-
spect to correcting bias in estimates and recovering known parameters
(Schafer and Graham, 2002). For sensitivity tests, FIML analyses were
also conducted after removing urban and suburban study members who
were missing information on greenery; this did not change the results.

3. Results

3.1. Do children who grow up in greener neighborhoods score higher on
overall cognitive ability tests?

Results from the multiple linear regression models testing associa-
tions between child greenery exposure and the cognitive outcomes are
displayed in Table 1. Children living in greener neighborhoods tended
to score slightly higher on measures of cognitive ability at ages 5, 12,
and 18 (Table 1, first column), with larger associations found for
crystallized cognitive ability (which measures a child's level of acquired
knowledge) than for the fluid cognitive ability (which measures a

child's ability to reason and solve novel problems), at least at ages 12
and 18; overall, effect sizes were smaller for outcomes measured in
adolescence (age 18) than for those measured earlier in childhood (age
5 and age 12). Differences among effect sizes were not statistically
significant.

To test whether detected associations may be explained by the self-
selection of families into greener neighborhoods, a series of adjusted
models were fit to the data. First, controls for children's genetics were
entered using the educational-attainment polygenic score. We have
previously shown that, in the full E-Risk sample, children with higher
educational-attainment polygenic scores exhibit greater overall IQ at
age 5 (r= 0.14, 95%CI: 0.09, 0.19, p < .001) (Wertz et al., 2018).
Here we found that, in the analysis sample, children with higher edu-
cational-attainment polygenic scores also tended to have higher overall
IQs at age 12 (r= 0.24, 95%CI: 0.18, 0.30, p < .001) and at age 18
(r= 0.23, 95%CI: 0.17, 0.29, p < .001). However, children's educa-
tional-attainment polygenic scores were not associated with their
greenery exposures across childhood (r= 0.03, 95%CI: −0.04, 0.10,
p= .463 by age 18). Consequently, adding the educational-attainment
polygenic score to the models testing the associations between cumu-
lative greenery exposure and the cognitive outcomes did not alter the
results (Table 1, second column).

Second, we tested whether children's family socioeconomic status
may explain the observed associations between greenery exposure and
the cognitive outcomes. Children from higher-status families tended to
live in homes surrounded by more ambient greenery; the relationship
between children's family socioeconomic status and their greenery ex-
posure increased as the children aged and more greenery assessment
waves were averaged into the cumulative measure of greenery exposure
(r= .12, 95%CI: 0.06, 0.19, p < .001 for family socioeconomic status
and greenery exposure at age 5 and r= 0.18, 95%CI: 0.12, 0.25,
p < .001 for family socioeconomic status and greenery exposure by
age 18). Adding family socioeconomic status to the multiple regression
models reduced the associations between greenery exposure and all
cognitive outcomes to non-significance except for those with age-5 fluid

Table 1
Association of child cognitive ability with neighborhood greenery exposure measured from age 5 up to the age of IQ testing.

Unadjusted Adjusted for child
genotype

Adjusted for family socioeconomic
status

Adjusted for neighborhood
socioeconomic status

Fully adjusted

β (95% CI) P β (95% CI) P β (95% CI) P β (95% CI) P β (95% CI) P

Age 5 overall IQ .09 .006 .09 .009 .05 .095 .02 .560 .03 .417
(.03, .16) (.02, .15) (-.01, .12) (-.05, .09) (-.04, .09)

Age 5 crystallized ability .06 .069 .06 .082 .03 .379 .01 .841 .01 .730
(-.01, .13) (-.01, .12) (-.04, .09) (-.06, .08) (-.05, .08)

Age 5 fluid ability .09 .003 .09 .005 .06 .043 .03 .407 .03 .289
(.03, .15) (.03, .15) (.00, .12) (-.04, .09) (-.03, .10)

Age 12 overall IQ .09 .007 .09 .004 .02 .553 -.001 .975 < .0001 .999
(.02, .15) (.03, .15) (-.04, .07) (-.07, .07) (-.06, .06)

Age 12 crystallized ability .11 .001 .11 .001 .03 .255 .01 .771 .01 .708
(.04, .17) (.05, .18) (-.02, .09) (-.06, .08) (-.05, .07)

Age 12 fluid ability .04 .178 .04 .151 -.01 .814 -.01 .653 -.01 .664
(-.02, .09) (-.02, .10) (-.06, .05) (-.08, .05) (-.07, .04)

Age 18 overall IQ .06 .062 .05 .077 -.02 .538 -.06 .117 -.05 .100
(-.003, .12) (-.01, .12) (-.07, .04) (-.12, .01) (-.11, .01)

Age 18 crystallized ability .07 .028 .07 .024 -.01 .742 -.04 .306 -.03 .292
(.01, .14) (.01, .14) (-.06, .04) (-.11, .03) (-.09, .03)

Age 18 fluid ability .02 .430 .01 .662 -.03 .287 -.05 .096 -.05 .105
(-.03, .08) (-.03, .06) (-.08, .02) (-.01, .01) (-.11, .01)

Note. 95% confidence interval (CI) reported in parentheses. Neighborhood greenery exposure was measured by taking the average of NDVI scores within a 1-mile
radius of the child's home assessed from age 5 years up to the age of IQ assessment for each outcome in the table. Neighborhood socioeconomic status was measured
using the UK Government's Index of Multiple Deprivation. All models adjusted for sex. Covariates in the fully adjusted model include sex, child polygenic score for
educational attainment, family socioeconomic status, and neighborhood socioeconomic status. Analyses were conducted using full information maximum likelihood
(FIML) estimated regression models to adjust estimates for missing data. 205 children (12.4% of the analysis sample) lacked the educational-attainment polygenic
score, 38 children (2.3%) were missing the measure of neighborhood socioeconomic status, and no children were missing the measure of family socioeconomic status.
On study outcomes, 16 children (1.0% of the analysis sample) were missing the age-5 outcome variables, 84 (5.1%) were missing the age-12 outcome variables, and
136 (8.2%) were missing the age-18 outcome variables.
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cognitive ability (Table 1, third column).
Third, we tested whether children's neighborhood socioeconomic

status may explain the observed associations between greenery ex-
posure and the cognitive outcomes. Higher socioeconomic status
neighborhoods also tended to have greater levels of ambient greenery;
the relationship between children's neighborhood socioeconomic status
and their greenery exposure grew stronger as the children aged and
more greenery assessment waves were averaged into the cumulative
measure of greenery exposure (r= .38, 95%CI: 0.31, 0.45, p < .001
for neighborhood socioeconomic status and greenery exposure at age 5
and r= 0.49, 95%CI: 0.43, 0.55, p < .001 for neighborhood socio-
economic status and greenery exposure by age 18). Adding neighbor-
hood socioeconomic status to the multiple regression models reduced
associations between greenery exposure and all cognitive outcomes to
non-significance (Table 1, fourth column).

Fourth, all child, family and neighborhood-level potential con-
founds were entered into the multiple regression models simulta-
neously. As expected, and shown in Table 1 (fifth column), all asso-
ciations between cumulative greenery exposure and the cognitive
outcomes were reduced to non-significance in the final model.

3.2. Do children who grow up in greener neighborhoods display greater
longitudinal change in overall cognitive ability?

We next tested whether cumulative childhood greenery exposure
predicted enhanced longitudinal change in cognitive ability for our
Study children across childhood and adolescence by 1) predicting age-
12 IQ scores while controlling for age-5 scores, and 2) predicting age-18
IQ scores while controlling for age-12 scores. When considering change
across childhood, we found that children living in greener neighbor-
hoods scored slightly higher on measures of crystalized cognitive ability
at age 12 than they did at age 5 (Table 2, first column), reflecting en-
hanced acquisition of knowledge relative to children living in less green
neighborhoods. Children living in greener neighborhoods did not,
however, demonstrate significantly more growth in full-scale IQ or fluid
cognitive ability across the same ages relative to peers living in less
green neighborhoods. When considering change across adolescence, we
found that children living in greener neighborhoods did not tend to
show greater growth on any of the IQ measures from age 12 to 18 re-
lative to peers living in less green neighborhoods (Table 2, first
column).

To test whether the detected association between cumulative

greenery exposure and accelerated longitudinal growth in crystalized
cognitive ability from ages 5 to 12 may be explained by the self-se-
lection of families into greener neighborhoods, we applied the same
series of adjustments to the longitudinal statistical model as for the
cross-sectional analyses. First, we adjusted for the child's genetic pre-
disposition to high educational attainment and rapid cognitive devel-
opment using the educational-attainment polygenic score. This adjust-
ment did not reduce the size of the original association, although the p-
value changed from 0.042 to 0.055 (Table 2, second column). Second,
we adjusted for family socioeconomic status. This adjustment reduced
the original association to non-significance (Table 2, third column).
Third, we adjusted for neighborhood socioeconomic status. This ad-
justment also reduced the original association to non-significance
(Table 2, fourth column).

Finally, as levels of neighborhood greenery are not static across
time, particularly for children who move residences, we also tested
whether children who experience longitudinal change in greenery ex-
posure across IQ assessment waves displayed corresponding long-
itudinal change in overall cognitive ability. To do so we created
greenery change scores from age 5 to 12 (by subtracting age 5 greenery
scores from age 12 scores) and correlated those with IQ change scores
from age 5 to 12 (created by subtracting age 5 IQ scores from age 12 IQ
scores). These tests were replicated for greenery and IQ change from
ages 12 to 18. We found that children whose exposure to residential
neighborhood greenery changed over time did not display corre-
sponding changes in overall cognitive ability, either from age 5 to 12
(r= 0.03, p= .187) or from age 12 to 18 (r=−0.01, p= .846).

3.3. Do children who grow up in greener neighborhoods show enhanced
executive function, working memory, or attention ability by age 18?

As IQ tests capture individual variability across a broad range of
cognitive domains, they may not be sensitive enough to detect the
modest changes in ability hypothesized to result from exposure to
green-space. Therefore, we also tested the relationship between child-
hood green-space exposure and child cognitive ability in the specific
cognitive domains of executive function, working memory, and atten-
tion ability, which were measured at age 18 using the CANTAB Spatial
Span, Spatial Working Memory, and Rapid Visual Information
Processing subtests, respectively. We found that children living in
greener neighborhoods tended to score higher at age 18 on the Spatial
Span subtest (β=0.08, 95%CI: 02, 0.14 p= .007), but not on the

Table 2
Association of longitudinal change in child cognitive ability from age 5 to 12 and from age 12 to 18 with neighborhood greenery exposure measured from age 5 up to
the highest age of IQ testing.

Unadjusted Adjusted for child
genotype

Adjusted for family
socioeconomic status

Adjusted for neighborhood
socioeconomic status

Fully adjusted

β (95% CI) P β (95% CI) P β (95% CI) P β (95% CI) P β (95% CI) P

Change in overall IQ from age 5
to 12 years

.01 .607 0.01 .858 -.02 .477 -.03 .325 -.02 .392
(-.04, .07) (-.04, .07) (-.06, .03) (-.09, .03) (-.08, .03)

Change in crystallized ability from
age 5 to 12

.06 .042 .06 .055 .01 .656 .001 .982 .01 .846
(.002, .12) (-.001, .11) (-.04, .06) (-.06, .06) (-.05, .06)

Change in fluid ability from age 5 to
12

−0.01 .858 −0.01 .816 −0.03 .301 −0.03 .240 −0.03 .257
(-.05, .03) (-.06, .04) (-.08, .02) (-.09, .02) (-.09, .02)

Change in overall IQ from age 12
to 18 years

−0.01 .541 −0.01 .518 −0.03 .128 −0.03 .142 −0.04 .108
(-.05, .03) (-.05, .03) (-.07, .01) (-.08, .01) (-.08, .01)

Change in crystallized ability from
age 12 to 18

−0.01 .735 −0.01 .689 −0.02 .193 −0.03 .224 −0.03 .186
(-.04, .03) (-.05, .03) (-.06, .01) (-.07, .02) (-.07, .01)

Change in fluid ability from age 12
to 18

−0.01 .611 −0.01 .623 −0.03 .277 −0.03 .243 −0.03 .211
(-.06, .03) (-.06, .03) (-.07, .02) (-.08, .02) (-.08, .02)

Note. 95% confidence interval (CI) reported in parentheses. Neighborhood greenery exposure was measured by taking the average of NDVI scores within a 1-mile
radius of the child's home assessed from age 5 years up to the highest age of IQ assessment for each outcome in the table. Neighborhood socioeconomic status was
measured using the UK Government's Index of Multiple Deprivation. All models adjusted for sex. Covariates in the fully adjusted model include sex, child polygenic
score for educational attainment, family socioeconomic status, and neighborhood socioeconomic status. Analyses were conducted using full information maximum
likelihood (FIML) estimated regression models to adjust estimates for missing data.
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Spatial Working Memory (β=-0.02, 95%CI: −0.08, 0.04, p= .488) or
Rapid Visual Information Processing subtests (β=0.02, 95%CI:
−0.04, 0.07, p= .512).

To test whether the association between cumulative greenery ex-
posure and the Spatial Span test of executive function at age 18 may be
explained by the self-selection of families into greener neighborhoods,
we applied the same series of adjustments to the executive-function-
outcome statistical model as for the cross-sectional and longitudinal IQ-
outcome analyses. First, we adjusted for the child's genetic predisposi-
tion to high educational attainment and rapid cognitive development
using the educational-attainment polygenic score. This adjustment did
not reduce the original association (β=0.07, 95%CI: 02, 0.13
p= .014). Second, we adjusted for family socioeconomic status. This
adjustment did reduce the original association to non-significance
(β=0.03, 95% CI: −0.03, 0.09 p= .272). Third, we adjusted for
neighborhood socioeconomic status. This adjustment also reduced the
original association to non-significance (β=0.002, 95%CI: −0.06,
0.07 p= .960).

4. Discussion

The integration of in-home cognitive testing and satellite imagery
data within a well phenotyped and genotyped cohort of children fol-
lowed across childhood and adolescence advanced our understanding
of the relationship between residential neighborhood greenery ex-
posure and child cognitive development in four ways. First, similar to
prior studies, we found statistically significant positive associations
between children's exposure to residential neighborhood greenery and
their performance on cognitive tests yielding overall IQ scores and
subscale measures of crystalized and fluid cognitive ability at ages 5,
12, and 18 years. It should be noted that, similar to other neighbor-
hood-level research findings, these associations were small ( =0.08 to
0.11). At age 5, for example, children in the top quartile of neighbor-
hood greenery exposure tested, on average, 3.18 IQ points higher on
their overall IQ than their peers in the bottom quartile of exposure.

Second, we found no evidence that the association between
greenery exposure and higher IQ scores was confounded by children's
genetic propensity for high educational attainment and rapid cognitive
development. In this cohort there was no relationship between chil-
dren's genetics and their exposure to residential neighborhood
greenery; children with a genetic propensity for high educational at-
tainment were not more likely to live in greener neighborhoods.

Third, we found a consistent social gradient in greenery exposure;
children growing up in higher socioeconomic status families tended to
live in greener neighborhoods, and the magnitude of the family socio-
economic status – greenery exposure association increased as children
aged into adolescence. Statistically adjusting the greenery-IQ associa-
tions for measures of socioeconomic status attenuated all original as-
sociations to such an extent that none remained statistically significant.

Fourth, we found that, after adjusting for socioeconomic factors,
children's lifelong exposure to residential neighborhood greenery did
not predict longitudinal change in their IQ scores across childhood or
adolescence, nor their scores on executive function, working memory,
or attention tests at age 18 years.

Collectively, these results suggest that children living in homes
surrounded by more vegetation and vegetated areas may tend to out-
perform their peers from less green neighborhoods on cognitive tests
assessing acquired knowledge and the ability to reason and solve novel
problems. We found no evidence to support the hypothesis that this
phenomenon is the result of children with greater genetic predisposi-
tions towards rapid cognitive development living in residences sur-
rounded by more greenery. We did find evidence to suggest, however,
that this phenomenon is likely confounded by the unequal distribution
of greenery across urban and suburban neighborhoods in the UK, where
families living in less deprived areas, and who have high-performing
children, tend to enjoy greener residential environments (correlation

between neighborhood socioeconomic status and neighborhood
greenery scores ranged from r=0.38 to 0.49). Neighborhood greenery
may not, in other words, directly improve children's overall cognitive
function despite the appearance of positive associations.

While socioeconomic status of the family and neighborhood fully
explained the associations found between neighborhood greenery and
children's overall cognitive development in this sample, our findings do
not preclude the possibility that targeted greening interventions may
impact other important child health and development outcomes.
Controlled experiments in classroom settings suggest that children
taught outdoors (Kuo et al., 2018), or given views to nature (Li and
Sullivan, 2016), may attend to their lessons better. Likewise, a rando-
mized neighborhood greening intervention trial in Philadelphia re-
cently reported that greening vacant lots significantly improved the
mental health of nearby residents, with the greatest effects reported for
neighborhoods with the most participants living below the poverty line
(South et al., 2018). Further research, including randomized interven-
tion trials, is required to understand for whom and under what condi-
tions greenery exposure may influence cognitive outcomes.

What can explain this study's non-significant findings given the re-
cent positive reports at the child-level from Spain (Dadvand et al., 2015,
2017, 2018) and the UK (Flouri et al., 2018)? First, previous studies
have only considered the narrow cognitive domains of attention and
working memory ability, using cross-sectional measures or those re-
corded across short time-spans. It is possible that children's residential
exposure to neighborhood greenery does not fundamentally alter long-
term outcomes in overall cognitive ability, even if short-term beneficial
associations with subdomains of ability exist. The finding that, after
adjustment for socioeconomic factors, cumulative greenery exposure
did not predict executive function, working memory, or attention
ability at age 18 years does suggest, however, that greenery associa-
tions with these specific cognitive abilities may not extend past the
school-age years.

Second, previous child-level studies have tended to measure re-
sidential greenery exposure within smaller zones than those considered
in the current study. Dadvand et al. assessed NDVI within a 250m ra-
dius of children's homes for those in living Barcelona, for example, and
within 100, 300, and 500m home radii for those living in Valencia and
Sabadell (Dadvand et al., 2015, 2017, 2018). Our roughly 1600m
buffer size, chosen to accommodate the neighborhood activity zone of
older children (Carver et al., 2008; Jones et al., 2009; Villanueva et al.,
2012), likely gathered information about a larger geographical neigh-
borhood space than these past studies would have. This could account
for differential findings if greenery in the near-home environment ex-
erts differential influence from greenery in the larger neighborhood, as
would be the case if a view to trees matters more, for example, than the
general presence of trees. Notably, a recent review of 47 studies and
260 analyses found that the likelihood of neighborhood greenery pre-
dicting physical health increased as neighborhood buffer zone size in-
creased, with peak associations found in buffers of between 1000 and
1999m in size (Browning and Lee, 2017).

We acknowledge limitations. First, while NDVI is a consistently used
measure of ambient vegetation exposure, it does not capture informa-
tion about children's use of parks and open spaces. Measures of child
park use would have improved our exposure estimates. However, this
limitation is common to larger studies with sufficient power to test
subtle effects, such as those on cognition. Second, while Study mem-
bers' exposure to greenery was assessed repeatedly across childhood
(from ages 5 to 18) we did not measure exposure before age 5. Thus,
early-life greenery exposure may have been misestimated for those
children who moved before age 5 or for whom residential neighbor-
hood greenery was not stable year to year. Third, neighborhood
greenery was only measured at one buffer radius (1 mile), which pre-
cluded testing for differential influence of greenery near the home
versus in the wider neighborhood environment. Fourth, our measure of
neighborhood socioeconomic status averaged deprivation scores across
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small areas in the UK, leading to possible misspecification of neigh-
borhood status for areas with highly heterogeneous neighboring par-
cels. Notably, the results of the study do not change if a smaller-scale
neighborhood status measure, such as ACORN, is utilized. Finally, we
were not able to fully leverage the E-Risk Study's twin-pair sample to
strengthen causal inference because Study twins tended to live in the
same home during childhood. As the E-Risk twins move through
adulthood, there will greater opportunity to test the influence of
neighborhood greenery on those who have discordant exposure – a
design recently employed with participants from the University of
Washington Twin Registry to identify a significant link between re-
sidential neighborhood greenery and mental health at midlife (Cohen-
Cline et al., 2015).

Notwithstanding its limitations, our study may hold implications for
research. First, our results indicate that childhood exposure to re-
sidential neighborhood greenery can be linked to subtle differences in
overall cognitive outcomes across childhood and adolescence that are
likely best explained as arising from shared relationships with family
and neighborhood socioeconomic factors. While most previous studies
of neighborhood greenery and cognition adjusted estimates for at least
one measure of family or neighborhood-level socioeconomic status, a
recent systematic review determined that few controlled for possible
confounding at both levels (Keijzer et al., 2016). Future research should
describe the extent to which greenery exposure is entwined with par-
ticipant social class and, further, attempt to adjust for possible con-
founding at both the family and neighborhood level whenever possible.
More research that can decouple the association between affluence and
greenery is particularly needed. Second, our findings suggest that child
genotype, at least for rapid cognitive development and high educational
attainment, may be unrelated to greenery exposure and thus unlikely to
exert a confounding effect on associations with cognitive outcome tests.
This suggests that while there is documented genetic selection into
deprived neighborhoods for factors related to educational attainment
(Belsky et al. in press), genetically related selection pressures may be
weaker with respect to neighborhood greenery.

As conflicting findings on neighborhood effects on child cognitive
ability emerge, the process of integrating these observations into a
coherent theory will require an increasing focus on experimentally
isolating active components and estimating causal impacts rather than
simply documenting robust associations within observational studies.
This study did not fully replicate the initial novel findings about
neighborhood greenery and child cognitive development reported by
others. Rather than a “failure to replicate,” these findings can be viewed
as an opportunity to explore the limits of generalizability (Redish et al.,
2018). Further research is now required to explore and experimentally
test the contexts and conditions in which neighborhood greenery may
be beneficial for children's cognitive development. It is appealing to
believe that exposure to green vegetation and natural spaces may en-
hance our children's intellectual growth. Our findings highlight the
need to exercise caution, however, when assuming that direct benefits
arise from greenery per se, or that benefits from greenery may be
uniform across populations and settings.
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